Cirrus Clouds triggered by Radiation

Fabian Fusina ETH - Zurich

1st EULAG Workshop - 9th October 2008

Content

- Introduction
 - Motivation, Cirrus clouds, Radiation Transfer
- Model Description
- Results
 - Reference Case
 - Sensitivity Studies \rightarrow Stability, wind-shear, RHi
- Conclusion

Motivation

Cirrus Clouds

- High level clouds consisting purely of ice crystals.
- Ice Supersaturated Regions (ISSR) are potential cirrus formation regions.
- Homogenous freezing is probably the dominant freezing mechanism in low temperature / high altitude regimes (< 235 K) [Koop et al., 2004].
- Cover approximately 20 30% of earth's surface [Wylie & Menzel, 1999]
- → Cirrus clouds are important modulators of earths radiation budged!

Cirrus Cloud Formation

- Mainly formed by vertical updrafts
- Dynamical processes acting on various scales

A superposition of different dynamical and microphysical processes on various scales influences the cirrus formation.

- <u>Large-scale processes (synoptic-)</u>: e.g. frontal lifting, (radiative cooling/heating)
- <u>Meso-scale processes</u>: e.g. gravity waves
- <u>Small-scale processes</u>: e.g. microphysical processes, turbulence

Radiation Transfer - ISSR

Cooling/heating due to radiation in ISSRs is a slow process (~ 2 K/d)

Radiation Transfer

Radiation Transfer

$$RHi = 100\% \cdot \frac{q_v \cdot p}{\varepsilon \cdot p_{sat,i}(T)}$$

State of the Art

- Only few parameterization for the physical correct formation of cirrus clouds driven by synoptic scale dynamics in global climate models (e.g. ECHAM, NCAR-Model).
- The impact of mesoscale and small-scale motion on cirrus clouds is not yet regarded.
- → Exclusive consideration of synoptic scale dynamics leads to an underestimation of the frequency of occurrence of cirrus clouds [Dean et. al., 2005].

- Resolution:
 - Spatial: x: 100m, z: 50m -- Model Domain: 12.8 x 15 km
 - Temporal: 1sek (dynamics), 100ms (ice physics), 10sek (radiation)

- Resolution:
 - Spatial: x: 100m, z: 50m -- Model Domain: 12.8 x 15 km
 - Temporal: 1sek (dynamics), 100ms (ice physics), 10sek (radiation)
- Recently developed <u>bulk ice microphysics scheme</u> for the low temperature range (T < 235 K) including:
 - Nucleation (homogeneous/heterogeneous)
 - Deposition (growth/evaporation)
 - Sedimentation
 - Consistent double moment scheme (v_T for ice crystal number and mass concentration)

- Implemented radiation code [Fu, 1996; Fu et al., 1998]
 - Solar (SW) regime: 6 Bands
 - . Longwave (LW) regime: 12 Bands
 - Uses spatial Resolution of EULAG within the Model Domain.
 - 1 km Resolution above the model domain up to z = 50 km

- Implemented radiation code [Fu, 1996; Fu et al., 1998]
 - Solar (SW) regime: 6 Bands
 - . Longwave (LW) regime: 12 Bands
 - Uses spatial Resolution of EULAG within the Model Domain.
 - 1 km Resolution above the model domain up to z = 50km
- Input: T, p, q_v, O₃, IWC, N
- Output:

- $r_{eff} = \frac{\int_0^\infty \left(\frac{A}{4\pi}\right)^{3/2} \cdot f(L) dL}{\int_0^\infty \frac{A}{4\pi} \cdot f(L) dL}$
- Optical depth (for every grid-cell)
- SW and LW up-/downward fluxes (for every grid-cell)
- SW and LW <u>Heating Rates</u> (for every grid-cell)

Setup

Cirrus triggered by radiation

Experimental Setup (reference case):

- . Supersaturated region with RHi 140%
 - Altitude: 10km, Thickness: 1km

- Radiation and temperature gauss-noise ($\sigma \sim 0.1$ K)
- Vertical gradient of potential Temperature: +0.4 K/km

Results – Reference Case

Cirrus triggered by radiation

RHi [%] / Ice water content [10⁻⁶ kg/m³]

Atmospheric and Climate Science nstitute for

Cirrus triggered by radiation

RHi [%] / Ice water content [10⁻⁶ kg/m³]

Results – Reference Case

Cirrus triggered by radiation

Negative Brunt-Vaisala Frequency $(N_m^2)! \rightarrow$ unstable

Results – Reference Case

Cirrus triggered by radiation

nstitute for Atmospheric and Climate Science

Results – Sensitivity Studies

Cirrus triggered by radiation

Sensitivity Studies:

Cirrus triggered by radiation - IWP

IACETH Institute for Atmospheric and Climate Science

Results

<u>Cirrus triggered by radiation</u> – outgoing radiation TOA

Institute for Atmospheric and Climate Science

Results – Sensitivity Simulations

Cirrus triggered by radiation

nstitute for Atmospheric and Climate Science

Conclusion

- 2-stream radiation transfer code implemented in EULAG
- Cooling/heating due to the emission of longwave radiation can trigger a cirrus cloud.
- The formation and evolution of this kind of cirrus clouds depends on the RHi of the ISSR and the stability (static and dynamic) of the stratification.
- The formed cirrus decrease the total outgoing radiation TOA (warming).

Conclusion

<u>Outlook:</u>

Development of parameterisations of these (subgrid) effects for large-scale models

Progress in this area will help to better determine the cirrus radiative forcing in the present climate and will allow more reliable predictions of cirrus clouds in a changing climate.

Thank you for listening!

Literature:

- Dean, S., B. Lawrence, R. Grainger, D. Heu, 2005: Orographic cloud in a GCM: the missing cirrus. *Climate Dynamics* 24, 771-780.
- Fusina, F., P. Spichtinger, U. Lohmann, 2007: The impact of ice supersaturated regions and thin cirrus clouds on radiation. *J. Geophys. Res.*, 112:D24S14, doi:10.1029/2007JD008449.
- Fu, Q., Yang, P., Sun, W., 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. *J. Climate* 11, 2223-2237.
- Koop, T., B. Luo, A. Tsias, T. Peter, 2004: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. *Nature*, 406, 611-614.
- Spichtinger P., K. Gierens, 2008a: Mesoscale modeling of homogeneous and heterogeneous cirrus cloud formation and evolution using the EuLag model. Part 1: Model description and validation. *Atmos. Chem. Phys. Diss.*, 8, 601-686.

Conclusion

- Pruppacher H.R., J.D. Klett, 1996. Microphysics of clouds and precipitation, 2nd Edition. Atmospheric and Oceanographic Science Library.
- Wylie D.P., W.P. Menzel, 1999. Eight years of high cloud statistics using HIRS. A.M.S., Vol.12, Iss. 1, pp. 170 184.

IACETH Institute for Atmospheric and Climate Science

Band No.	Spectral region (μ m)
1	0.2 - 0.7
2	0.7 - 1.3
3	1.3 - 1.9
4	1.9 - 2.5
5	2.5 - 3.5
6	3.5 - 4.0

Table 3.4: Wavelengths of the optical bands of the radiation code designed by Fu et al. (1998) - Solar regime

Band No.	Spectral region (μm)	(cm^{-1})
1	4.5 - 5.3	1900 - 2200
2	5.3 - 5.9	1700 - 1900
3	5.9 - 7.1	1400 - 1700
4	7.1 - 8.0	1250 - 1400
5	8.0 - 9.0	1100 - 1250
6	9.0 - 10.2	980 - 1100
7	10.2 - 12.5	800 - 980
8	12.5 - 14.9	670 - 800
9	14.9 - 18.5	540 - 670
10	18.5 - 25.0	400 - 540
11	25.0 - 35.7	280 - 400
12	$35.7 - \infty$	0 - 280

Table 3.5: Wavelengths and wavenumbers of the optical bands of the radiation code designed by Fu et al. (1998) - Longwave regime

