roduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
0000		0					

Impact of mesoscale dynamics and aerosols on the life cycle of cirrus clouds

Peter Spichtinger

Institute for Atmospheric and Climate Science ETH Zurich Zurich, Switzerland

October 9th, 2008

ospheric and Climate Science

Introduction

Why should we care about cirrus clouds?

- Cirrus clouds cover ca. 20–30% of the Earth
- Cirrus clouds are important modulators for radiation
- Cirrus clouds are important for dehydration in the tropopause region and for stratospheric water vapour entry

Introduction

Introduction

Why should we care about cirrus clouds?

Cirrus clouds cover ca. 20–30% of the Earth

Aerosols

- Cirrus clouds are important modulators for radiation
- Cirrus clouds are important for dehydration in the tropopause region and for stratospheric water vapour entry

Do we understand cirrus clouds? Not really:

- Ice crystal formation is only partly understood, impact of aerosols?
- Life cycle of cirrus clouds? Impact of dynamics?
- Radiative impact of cirrus clouds (warming? cooling? see e.g. Fusina et al., 2007)?

Introduction: radiative impact of Ci

total outgoing radiation = outgoing longwave radiation + reflected shortwave radiation (strong dependence on ice crystal number density)

Introduction - High ice supersaturation

Outside clouds:

Introduction - High ice supersaturation

Inside clouds:

nospheric and Climate Science Å IAC*ET* Institute for /

Introduction

Introduction

Issues/problems discussed in cirrus community:

- High and persistent ice supersaturation inside cirrus clouds:
 - errors in measurements (see AquaVit comparison in 2007)?
 - exotic microphysics (cubic ice, organic substances, glassy particles)?
 - competition of different nucleation processes?
 - impact of dynamics?
- High ice crystal number densities:
 - shattering of large ice crystals?
 - other explanations (e.g. dynamics)?

 \Rightarrow Motivation for development of "new ice microphysics scheme" for cloud-resolving modelling (in EULAG)

Introduction 0000

Introduction

New ice microphysics for the cold temperature regime (T < 235 K):

- To be able to differenciate between different formation mechanisms
- Explicit impact of aerosols
- Suitable for cloud-resolving scale (resolution in order of 10 - 100 m)

Bulk microphysics, double moment scheme (prognostic equations for ice crystal number density and ice crystal mass concentration), including the following processes:

- Nucleation
- Diffusional growth/evaporation
- Sedimentation

Spichtinger and Gierens, ACPD, 2008a

Model 0000 Aerosols

General basis

Arbitrary many classes of ice (j = 1, ..., n), discriminated by their formation mechanism. Each class consists of:

- \triangleright Ice crystal number concentration $N_{c,i}$
- \triangleright Cloud ice mass mixing ratio $q_{c,i}$
- Background aerosol number concentration $N_{a,i}$
- **b** Background aerosol mass mixing ratio $q_{a,i}$

General mass ice distribution f(m) (lognormal type with variable modal mass and fixed geometrical standard deviation).

One-to-one relation between ice and aerosols:

Introduct	ion Model	Validatio O	n	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
	Progno	ostic e	qua	ations				
		$rac{D heta}{Dt}$	=	$\frac{L\theta_e}{c_p T_e} (\mathrm{NU}$	JC + DEF	')		(1)
and the sea		$\frac{Dq_v}{Dt}$	=	- (NUC -	+ DEP)			(2)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$rac{Dq_{c,j}}{Dt}$	=	$\frac{1}{\overline{\rho}}\frac{\partial(\overline{\rho}q_{c,j})}{\partial z}$	$(v_{m,j}) + \mathrm{NU}$	$UC_{j} + DE$	P_{j}	(3)
te Science		$\frac{DN_{c,j}}{Dt}$	=	$\frac{1}{\overline{\rho}}\frac{\partial(\overline{\rho}N_{c,j})}{\partial z}$	$(v_{n,j}) + NN$	$NUC_j + N$	DEP _j	(4)
nd Clima		$rac{Dq_{a,j}}{Dt}$	=	NUCA _j +	- DEPA _j			(5)
pheric a		$\frac{DN_{a,j}}{Dt}$	=	-NNUC _j	$+ NDEP_{2}$	j		(6)
tmos	where <i>j</i> is	the resp	ecti	ve class in	dex and	n		
CETH tute for A		NU	C =	$\sum_{j=1}^{n} \text{NUC}$	$_{j}, DEP =$	$\sum_{j=1}^{n} \text{DEP}$	j.	(7)
IA(Insti	Peter Spichtinger	(IACETH)		Cirrus clouds: dy	ynamics and aero	sols	October 9th, 2008	8 / 46

Model description – Nucleation

Two different processes, both determined by the background aerosols, respectively:

homogeneous nucleation: the number concentration of sulfuric acid is prescribed as background aerosol

 \rightarrow mass/size distribution of aqueous solution droplets which freeze homogeneously acc. to Koop et al. (2000), depending on water activity (i.e. relative humidity) and temperature.

heterogeneous nucleation: Background aerosol determines the maximal number of ice nuclei. After passing a threshold *RHi_{het}* all available aerosol particles act as ice nuclei and form ice crystals (more sophisticated schemes are under development, Spichtinger and Cziczo, in revision)

Both processes require high supersaturation with respect to ice.

ospheric and Climate Science

Model description – Deposition

Aerosols

For diffusion growth/evaporation we generally use the ansatz by Koenig (1971), which is modified using a correction derived from the numerical solution of the growth equation ($\alpha = 0.5$):

$$\frac{dm}{dt} \approx a \cdot m^b \cdot (1 - \exp\left(-(m/m_0)^{\gamma}\right)) \tag{8}$$

Using general moments of the mass distribution f(m) (kth moment: $\mu_k[m] := \int f(m)m^k dm$) and the definition of the ice mass concentration ($q_c = \mu_1[m]$) we obtain:

$$\frac{dq_c}{dt} \approx a \cdot \mu_b[m] \cdot (1 - \exp\left(-(\overline{m}/(m_0 \cdot \chi))^{\gamma}\right))$$
(9)

with the mean mass $\overline{m}=\mu_1/\mu_0$ of the mass distribution and a correction factor $\chi\approx 20$

Model

Introduction

Model

Adds 2

Model description – Sedimentation

Two different terminal velocities (mass weighted and number weighted, $v_{t,m}$, $v_{t,n}$):

$$q_c \cdot v_{t,m} = \int_0^\infty f(m) \ m \ v_t(m) \ dm \qquad (10)$$

$$N_c \cdot v_{t,n} = \int_0^\infty f(m) v_t(m) dm \qquad (11)$$

We use mass-velocity relations by Heymsfield and laquinta (2000):

$$\frac{v_t}{v_0} = \alpha \cdot \left(\frac{m}{m_0}\right)^{\beta}, \quad v_0, m_0 \text{ unit velocity/mass}$$
(12)

and derive the following formulas for the terminal velocities:

$$v_{t,n} = v_0 \cdot \frac{\alpha}{m_0^{\beta}} \cdot \frac{\mu_{\beta}[m]}{\mu_0[m]}$$
(13)
$$v_{t,m} = v_0 \cdot \frac{\alpha}{m_0^{\beta}} \cdot \frac{\mu_{\beta+1}[m]}{\mu_1[m]}$$
(14)

Peter Spichtinger (IACETH)

Cirrus clouds: dynamics and aerosols

Validation

From boxmodel calculations compared to detailed microphysics: Ideal simulations: no limitation due background ($N_a = 10000 \mathrm{cm}^{-3}$)

nospheric and Climate Science

Å

nstitute for

 Introduction
 Model
 Validation
 Aerosols
 Dynamics
 Conclusions
 Adds 1
 Adds 2

 00000
 000000
 00000000
 0000000
 0000000
 0000000

Validation

From boxmodel calculations compared to detailed microphysics: Real simulations: limitation due background ($N_a = 300 \text{cm}^{-3}$)

Peter Spichtinger (IACETH)

Atmospheric and Climate Science

nstitute for

Cirrus clouds: dynamics and aerosols

Validation

From boxmodel calculations compared to detailed microphysics: Highly sensitive to time step (i.e. microphysical time step)

nospheric and Climate Science

Å

nstitute for

Aerosols 0000000

Setup (2D)

Horizontal extension: 6.3 km, cyclic, dx = 100 m, dz = 10 m Two classes of ice (homogeneous freezing acc. to Koop et al., 2000, heterogeneous nucleation with threshold RHi = 130%) Constant uplift with $w = 0.06 \text{m s}^{-1}$, initial profiles:

Following pictures: lines indicate ice crystal number density. Purple: homogeneous freezing, black: heterogeneous nucleation

Peter Spichtinger (IACETH)

Cirrus clouds: dynamics and aerosols

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
			00000000				

Reference simulation

Peter Spichtinger (IACETH)

Atmospheric and Climate Science

IACET^I Institute for /

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
			00000000				

Changing IN concentrations: $N = 5L^{-1}$

Atmospheric and Climate Science IAC*ET* Institute for

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
			00000000				

Changing IN concentrations: $N = 10L^{-1}$

October 9th, 2008

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
			00000000				

Changing IN concentrations: $N = 20L^{-1}$

Peter Spichtinger (IACETH)

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
			00000000				

Changing IN concentrations: $N = 50L^{-1}$

Atmospheric and Climate Science nstitute for

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
			00000000				

Interpretation

heterogeneously formed ice crystals reduce ice supersaturation, thus impacting the following homogeneous nucleation event

 Introduction
 Model
 Validation
 Aerosols
 Dynamics
 Conclusions
 Adds 1
 Adds 2

 000000
 00000000
 00000000
 00000000
 00000000
 00000000

Interpretation

Three regimes:

- Few heterogeneous IN: Only few heterogeneous IN (up to about 10 L⁻¹): Homogeneous nucleation occurs over the whole depth of the cloud
- Medium number of IN (about 10/20 L⁻¹): Heterogeneous nucleation disturbs subsequent homogeneous nucleation; ice supersaturation inside the cirrus cloud possible.
- Large number of IN (50 L⁻¹ and more): The cloud is completely dominated by heterogeneously formed ice.

High (and persistent) supersaturation inside cirrus possible

October 9th, 2008

Q 9711 8.50 Peter Spichtinger (IACETH)

neric and Climate Science

Introduction

Aerosols

Dynamics Co

nclusions Adds 1

Adds 2

Motivation: CIRRUS II campaign

Measurements in warm front cirrus over Norway: Very high ice crystal number densities were found in regions dominated by synoptic updrafts ($w \le 5 \mathrm{cm} \mathrm{s}^{-1}$)

High vertical velocity component is missing ...

00000 00000 0 000000 0000000 000000 0000	Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
	00000		0		000000000000000000000000000000000000000	000		

Vertical profile in ascent

 \Rightarrow Idealized model study using almost exclusively ECMWF fields

First series of simulations

- ▶ horizontal extension $L_x = 51.1$ km, dx = 100 m, cyclic
- ▶ vertical extention $4 \le z \le 13$ km, dz = 50 m
- ▶ supersaturation layer (RHi=120%) in the vertical range $8500 \le z \le 11500$ m
- ▶ Gaussian temperature fluctuations $\sigma_T = 0.1$ K at initialisation
- Only homogeneous nucleation
- optionally: constant large scale lifting of the whole model domain w = 3 cm s⁻¹ (mean value from trajectory calculations)

General setup (2D)

Profiles of potential temperature and horizontal wind:

In general two cases with different wind profiles.

Peter Spichtinger (IACETH)

Cirrus clouds: dynamics and aerosols

IAC*ETH* Institute for Atmospheric and Climate Science

Case 1, without lifting

t=000 min

nospheric and Climate Science Å Institute for

Introduction

nospheric and Climate Science

A P

Institute for

I Valida

Aerosols

Dynamics Cor

Conclusions

Adds 2

Case 1, without lifting

t=010 min

Introduction

o o O

Aerosols

Dynamics Con

clusions Adds 1

Adds 2

Case 1, without lifting

t=020 min

nospheric and Climate Science A P Institute for

Case 1, without lifting

t=030 min

nospheric and Climate Science A T Institute for

Case 1, without lifting

t=040 min

nospheric and Climate Science Institute for

Case 1, without lifting

t=050 min

nospheric and Climate Science Å Institute for

Case 1, without lifting

t=060 min

Atmospheric and Climate Science IAC*ET* Institute for

Case 1, without lifting

t=070 min

Atmospheric and Climate Science IAC*ET* Institute for

Case 1, without lifting

t=080 min

Case 1, without lifting

t=090 min

Atmospheric and Climate Science IAC*ET* Institute for

comparison without/with lifting

t= 030 min, top: $w = 0 \ \mathrm{cm} \ \mathrm{s}^{-1}$, bottom: $w = 3 \ \mathrm{cm} \ \mathrm{s}^{-1}$

Atmospheric and Climate Science Institute for

comparison without/with lifting

Atmospheric and Climate Science

IACE1 Institute for t= 060 min, top: $w = 0 \text{ cm s}^{-1}$, bottom: $w = 3 \text{ cm s}^{-1}$

October 9th, 2008 28 / 46

comparison without/with lifting

t= 090 min, top: $w = 0 \ \mathrm{cm} \ \mathrm{s}^{-1}$, bottom: $w = 3 \ \mathrm{cm} \ \mathrm{s}^{-1}$

28 / 46

Atmospheric and Climate Science IAC*ET* Institute for

Ice crystal number concentrations

Peter Spichtinger (IACETH)

Ice crystal number concentration distributions:

ACETH Institute for Atmospheric and Climate Science

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
				0000000000	0000		

Relative humidity distributions:

High ice supersaturation inside cirrus cloud possible.

Peter Spichtinger (IACETH)

Cirrus clouds: dynamics and aerosols

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
				0000000000	00000		

Vertical velocity distributions:

Summary

- New ice microphysics scheme for EULAG (Spichtinger and Gierens, ACPD, 2008a)
- Modification of homogeneous nucleation by heterogeneous IN leads to high and persistent ice supersaturation inside cirrus clouds (Spichtinger and Gierens, ACPD, 2008b)
- Kelvin–Helmholtz instabilities could explain high ice crystal number densities in CIRRUS II case, i.e. no artificial enhancement but real (Spichtinger et al., in prep.)
- Dynamics and aerosols can crucially influence cirrus cloud properties (ice crystal number density, relative humidity inside cirrus, ...)

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
					000		

The End

Thank you for your attention

ospheric and Climate Science

Institute for

Homogeneous nucleation

Aerosols

- lognormal size distribution of background aerosol droplets (sulfuric acid) with initial modal radius/mass and fixed geometric standard deviation σ_a
- Due to Koehler's theory: Size distribution of H₂O/H₂SO₄ solution droplets (radius r_d), depending on environmental conditions (T, RH)
- Amount of newly nucleated ice crystals per time step Δt calculated using nucleation rates J(a_w, T) (Koop et al., 2000):

$$\Delta N_i = N_a \cdot \int_0^\infty f(r_d) (1 - \exp(-JV_d \Delta t)) dr_d, \qquad (15)$$

 N_a =available background aerosol number density, V_d =droplet volume

Adds 1

Homogeneous nucleation

IACETH Institute for Atmospheric and Climate Science

Introduction	Model	Validation	Aerosols	Dynamics	Conclusions	Adds 1	Adds 2
						00000	

Ice nucleation I

By surpassing a nucleation threshold (depending on droplet size and temperature) spontaneous freezing set in. Remark: nucleation rates vary over several orders of magnitudes.

Introduction	Model	Validation O	Aerosols	Dynamics	Conclusions	Adds 1 000●0	Adds 2
lo	e nuc	eation	П				
and the second	Deposi	tion	•_	→ _ ^s i	>1		
iende	Immers	sion freezing		T < T ^{imm}	•		
Climate So	Conde	nsation freez	S _w > 1 ≥ing ●	and T < T _{ac}	ond et	-	,

Aerosol properties important ...

Contact freezing

 $T < T_{act}^{ct}$

Cirrus cloud projects at ETH Zurich

EULAG projects

- Cirrus and turbulence (Spichtinger & Smolarkiewicz)
- Orographic cirrus clouds (Joos & Spichtinger)
- Cirrus clouds, radiation and smallscale dynamics (Fusina & Spichtinger)
- Multiscale modelling of cirrus clouds (Fusina & Spichtinger)

Further boxmodel studies and GCM projects

Introduction Model Validation Aerosols Dynamics Conclusions Adds 1 Adds 2

2D relative humidity fields

$t = 150 \text{ min}, N_a = 00 \text{L}^{-1}$

Institute for Atmospheric and Climate Science

2D relative humidity fields

t = 150 min, $N_a = 10 L^{-1}$

Atmospheric and Climate Science

Institute for

2D relative humidity fields

t = 150 min, $N_a = 50 L^{-1}$

Atmospheric and Climate Science Institute for

mean relative humidity $\geq 100\%$

IAC*ETH* Institute for Atmospheric and Climate Science

orographic waves???

Remember flight pattern over Norway:

What about flow over mountains? orographic waves?

Cirrus clouds: dynamics and aerosols

Second series of simulations

- ▶ horizontal extension $L_x = 255.5$ km, dx = 500 m, open
- ▶ vertical extention $0 \le z \le 15$ km, dz = 50 m
- ▶ Bell–shaped mountain (amplitude h = 750 m, width a = 15 km)
- ► supersaturation layer (RHi=120%) in the vertical range 8500 ≤ z ≤ 11500 m
- ▶ Gaussian temperature fluctuations $\sigma_T = 0.1$ K at initialisation
- Only homogeneous nucleation

Remark: Due to a coarser resolution we expect lower vertical velocities inside the Kelvin-Helmholtz instability.

00000	00000	0	alidation	00	000000	000000	ooooooc	onclusions	Adds 1 00000	
	Case 1 t= 000 m	in								
Alto server	14	-	1	1 1	- 348	1 1 1	. .	1 1 1	1	348 -
No.	12	-			316	i				316
Science	z/km 111111 12					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9898894499449244927484444	@&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Climate (4 2	_								- 28#
and	ōĒ	1 1	1					\sim	1	
mospheric	0		50)	100 RHi	x/kn (%)	150 1	2	00	250
tute for A		52	64	76	88 100	112	124	136 148	160	
IA	Peter Spichtinger	(IACE	TH)	Cirrus	s clouds: dy	namics and	d aerosols	0	ctober 9th, 2	2008 44 / 46

44 / 46

Case 1 t= 045 min	
	- 348 -
	28
	_ 250
x/km RHi (%)	
52 64 76 88 100 112 124 136 148	160
Peter Spichtinger (IACETH) Cirrus clouds: dynamics and aerosols Octo	ber 9th. 2008 44 / 46

00000	00000	va O	nuation	, P	0000000	00 0	0000000			ons	000	00	000000
	Case 1 t= 075 m	in											
A. Strange	14 12	- -	1		- 34	8		~				- 348	
Winter -	10 E 。						NON						
Science	z/k 1111 2	-				~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~	~~~~	~~~~	R I I
Climate	4				28	4							
and	οĒ					1.			\frown	SS-			
heric	0		5	0	1	00	/1	150		20	0	2	50
ktmosph						RHi (x/ km %)	1					
for A													
nstitute		52	64	76	88	100	112	124	136	148	160		
<u> </u>	Peter Spichtinger	(IACET	TH)	Cir	rus cloud	s: dyna	mics and	aeroso	ls	Oc	tober 9t	h, 2008	44 / 46

A .1.1. O

00000	00000	0 Va	inuation		2000000	00 0	0000000		000	IONS	000	00	0000000
	Case 1 t= 090 m	in											
AN .	14 12	- -	1	' '		8- 316-		·				- 348	
cience	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-											
nd Climate S	4 2 0	-		1		4			~~~			28-	
Atmospheric a	0		5	0	1	.00 RHi (x/km %)	150 1		20	0	2	50
Institute for /	Datas Calabianas	52	64	76	88	100	112	124	136	148	160	L 2008	
	Peter spichtinger	(IACE	<i>іп</i>)	Cir	rus cioud	s: uyna	mics and	aeroso	October 9th, 2008 44 / 46				

A .1.1. O

 Introduction
 Model
 Validation
 Aerosols
 Dynamics
 Conclusions
 Adds 1
 Adds 2

 00000
 000000
 0
 0000000
 00000000
 00000
 000000
 000000

Modification by orographic wave

Three horizontal sections:

- ▶ $80 \le x \le 130$ km (Kelvin-Helmholtz instability)
- ▶ $150 \le x \le 170$ km (downdraught region of mountain wave)
- ▶ $170 \le x \le 230$ km (updraught region of mountain wave)

Ice crystal number concentration distributions:

nospheric and Climate Science Atr ACE1 Institute for