

MODELING OF SUBGRID-SCALE MIXING IN LARGE-EDDY SIMULATION OF SHALLOW CONVECTION

Dorota Jarecka¹ Wojciech W. Grabowski² Hanna Pawlowska¹ Sylwester Arabas¹

¹ Institute of Geophysics, University of Warsaw, Poland
² National Center for Atmospheric Research, USA

Motivation

Shallow convective clouds are strongly diluted by entrainment

Overview

For atmospheric LES models, subgrid-scale mixing should cover wide range of situations:

from extremely inhomogeneous at scales close to model gridlength,

to homogeneous at scales close to the Kolmogorov scale (typically around 1 mm).

> physical area ~ 9cm x 6cm, Malinowski et al. NJP 2008

domain size ~ 64cm x 64cm; *Andrejczuk et al. JAS 2006*

Description of model

The Eulerian version of 3D anelastic semi-Lagrangian-Eulerian model EULAG (Smolarkiewicz et al.).

Two versions of 1-moment microphysics were used (predicting mixing ratios only):

- traditional bulk microphysics
- modified bulk microphysics with additional parameter λ to describe turbulent mixing.

Bulk microphysics

Condensation rate C is defined by constraints that the cloud water can exist only in saturated condition and the supersaturation is not allowed.

In the bulk model, C is derived by saturation adjustment after calculation of advection and eddy diffusion – C^{sa}

Bulk microphysics

Instantaneous adjustment is questionable for the cloud-environment mixing...

This is because microscale homogenization occurs at scales around 1 cm and smaller!

Possible approaches

Simple approach: a subgrid scheme based on Broadwell and Breidenthal (JFM 1982) scale collapse model (Grabowski 2007);

Sophisticated approach: embedding Kerstein's Linear Eddy Model (LEM) in each LES gridbox ("One-Dimensional Turbulence", ODT; Steve Krueger, U. of Utah).

Possible approaches

Simple approach: a subgrid scheme based on Broadwell and Breidenthal (JFM 1982) scale collapse model (Grabowski 2007);

Sophisticated approach: embedding Kerstein's Linear Eddy Model (LEM) in each LES gridbox ("One-Dimensional Turbulence", ODT; Steve Krueger, U. of Utah).

λ approach

To represent the chain of events characterizing turbulent mixing, Grabowski (JAS 2007) introduced an additional model variable.

spatial scale λ of the cloud filaments during turbulent mixing

$$\frac{d\lambda}{dt} = -\alpha \epsilon^{1/3} \lambda^{1/3}$$

 ϵ - dissipation rate of TKE

(Broadwell and Breidenthal 1982),

Application of the λ equation into model

$$\frac{\partial \lambda}{\partial t} + \frac{1}{\rho_o} \nabla \cdot (\rho_o \mathbf{u} \lambda) = -\alpha \epsilon^{1/3} \lambda^{1/3} + S_\lambda + D_\lambda$$

 λ has to be between two scales: $\lambda_0 \leq \lambda \leq \Lambda$; Λ is the model gridlength; λ_0 is the homogenization scale; say, $\lambda_0 = 1$ cm.

 \mathcal{S}_{λ} - ensures transitions between cloud-free and cloudy gridboxes (initial condensation) or between inhomogeneous to homogeneous cloudy volume

 D_{λ} - subgrid transport term

Evaporation

Saturation adjustment is delayed until the gridbox can be assumed homogenized:

 $\lambda = \Lambda$ or $\lambda \le \lambda_0$ $C = C^{sa}$ (saturation adjustment) $\lambda_0 \le \lambda \le \Lambda$ $C = \beta C^a$ (adiabatic)

 β - fraction of the gridbox covered by cloudy air

 $C^a = -rac{dq_{vs}}{dt}$ - adiabatic condensation rate

β diagnosed

Grabowski (2007) proposed diagnostic formula for β based on the relative humidity of a gridbox and on the environmental relative humidity at a given level.

β diagnosed

$RH \approx \beta + (1 - \beta)RH^e$

$$\beta = \max\left(0, \min\left(1, \frac{RH - RH^e}{1 - RH^e}\right)\right)$$

RH - relative humidity of the gridbox RH^e - environmental relative humidity at this level

Delay in saturation adjustment

homogenization delayed until turbulent stirring reduces the filament width λ to the value corresponding to the microscale homogenization λ_0

> Bulk model: immediate homogenization

mixing event

Simulation of shallow convection observed in BOMEX experiment.

I km deep trade wind convection layer overlays a 0.5 km deep mixed layer near the ocean surface and is covered by 0.5 km deep trade wind inversion layer.

The cloud cover is about 10%.

FIG. 1. Initial profiles of the total water specific humidity q_t , the liquid water potential temperature θ_t , and the horizontal wind components u and v. The shaded area denotes the conditionally unstable cloud layer.

Model setup

Model setup is as described in *Siebesma et al., JAS 2003* but applying different domain sizes and model gridlengths (i.e., the same number of gridpoints in the horizontal 128 x 128, 3-km vertical extent of the domain).

Three different model gridlengths were considered:

100m / 40m (i.e., as in Siebesma et al.)

- 50m / 40m
- 25m / 25m

Gridlength: 100m / 40m

β diagnosed

Grabowski (2007) proposed diagnostic formula for β based on the relative humidity of a gridbox and on the environmental relative humidity at a given level.

$$\beta = \max\left(0, \min\left(1, \frac{RH - RH^e}{1 - RH^e}\right)\right)$$

RH - relative humidity of the gridbox RH^e - environmental relative humidity at this level

For stratocumulus, cloudenvironment mixing takes place primarily at the cloud top, where environmental profiles change rapidly.

β predicted

We propose to use a prognostic equation for β and check *a posteriori* if the diagnostic formula is accurate for shallow convection:

$$\frac{\partial\beta}{\partial t} + \frac{1}{\rho_o} \nabla \cdot (\rho_o \mathbf{u}\beta) = S_\beta + D_\beta$$

- S_{β} source/sink source
- D_{β} subgrid transport term

Comparison of predicted and diagnosed $\boldsymbol{\beta}$

The values predicted by the model are typically smaller than those diagnosed.

The entrained air is typically more humid than far-environmental air at this level.

Comparison between modified models

Comparison of vertical velocities in cloud

Countoured Frequency by Altitude Diagrams

Gridlength - 100m / 40m

Vertical velocity versus λ

The grid boxes with intermediate values of λ are characterized by small positive and negative vertical velocities.

Vertical velocity versus Adiabatic Fraction (AF) -comparison of models

bulk

0 – 300 m

300 – 600 m

600 – 900 m

900 – 1200 m

Vertical velocity versus Adiabatic Fraction (AF) -comparison with RICO experiment

bulk

λ-β

04

0.4

0.4

0.4

0.6

0.6

0,6

0.6

11.5

0.8

0.8

0, B

RICO experiment

Summary

Including λ parameter in the bulk model allows representing in a simple way progress of turbulent mixing between cloudy air and entrained dry environmental air

• β should be another model variable

Future plans

- Use λ approach in a model with more complicated microphysics (a double-moment bulk scheme) to predict changes of the mean size of cloud droplets.
- Apply λ approach to stratocumulus cases.
- Compare model result with experimental date from RICO, IMPACT campaign.