
EULAG
PARALLELIZATION AND

DATA STRUCTURE

Andrzej Wyszogrodzki
NCAR

Parallelization - methods

Shared Memory (SMP) :

 Automatic Parallelization

 Compiler Directives (OpenMP)

 Explicit Thread Programming (Pthreads, SHMEM)

Distributed Memory (DMP) / Massively Parallel Processing (MPP) :

 PVM – currently not supported

 SHMEM – Cray T3D, Cray T3E, SGI Origin 2000

 MPI – highly portable

Hybrid Models: MPI+OpenMP

SMP Architecture

Performance and scalability issues:

 Synchronization overhead

 Memory bandwidth

Processor Processor

Cache Cache

Bus / Crossbar Switch

Memory I/O

 Common (shared) memory for tasks communication (threads).

 Memory location fixed during task access

 Synchronous communication between threads.

……

thread thread

All computational
threads in a group
belong to a single
process

Process

MPP Architecture

 Each node has its own memory subsystem and I/O.

 Communication between nodes via Interconnection network

 Exchange message packets via calls to the MPI library

Interconnection Network

……

Node Node

MPI Library

Performance and scalability issues:

Overhead ~ to the size and number of packets

Good scalability on large processor systems.

Processor

Cache

Bus

Memory
 I/O

Processor

Cache

Bus

Memory
 I/O

Process 0
Process N

 Each task is a Process.

 Each Process Executes
the same program and
has its own address
space

 Data are exchanged in
form of message
packets via the
interconnect (switch, or
shared memory)

Multithread tasks per node

Shared

memory

START

P1

ti
m

e

P2

fork

join

END

Process 0

Node 1 Node 2

Message passing
MPI

Shared

memory

START

P1 P2

fork

join

END

Process 2

O
p
e
n
 M

P

O
p
e
n
 M

P

Optimize performance on "mixed-mode" hardware (e.g. IBM SP, Linux Superclusters)

Optimize resource utilization (I/O)

 MPI is used for "Inter-node" communication,

 Threads (OpenMP / Pthreads) are used for "Intra-node" communication

OpenMP

Components to specify shared memory parallelism:
 Directives
 Runtime Library
 Environment Variables

PROS:
 Portable / multi-platform working on major hardware architectures
 Systems including UNIX and Windows NT
 C/C++ and FORTRAN implementations
 Application Program Interface (API)

CONS:

 Scoping - variables in a parallel loop: private or shared?
 Parallel loops may calls subroutines, include many nested do loops
 Non parallelizable loops - automatic compiler parallelization?
 Not easy to get optimal performance:
 Effective use of directives, code modification, new computational algorithms
 Need to reach more than 90% of parallelization to hope for good speedup

EXAMPLE:

 !$OMP PARALLEL DO PRIVATE (I)

do i=1,n

 a(i) = a(i)+1

 end do

 !$OMP END PARALLEL DO

Message Passing Interface - MPI

MPI – library, not a language
Library of around 100 subroutines (… most codes uses less than 10)

Message-passing: collection of processes communicating via messages:

 Collective or global - group of processes exchanging messages
 Point-to-point - pair of processes communicating with each other

MPI 2.0 standard released in April 1997, extention to MPI 1.2
 Dynamic Process Management (spawn)
 One-sided Communication (put/get)
 Extended Collective Operations
 External Interfaces
 Parallel I/O (MPI-I/O)
 Language Bindings (C++ and FORTRAN-90)

Parallelization strategies:

 Choose data decomposition / domain partition
 Map model sub-domains to processor structure
 Check data load balancing
 Use parallel algorithms if possible (e.g. parallel FFT)
 Set up Communication

MPP vs SMP

Advantages Disadvantages

Compiler

- Very easy to use

- No rewriting of code
- Marginal performance

- Loop level parallelization

Open MP - Easy to use

- Limited rewriting of code

- OpenMP - standard

- Average performance

MPI - High performance

- Portable

- Scales outside a Node

- Extensive code rewriting

- May have to change algorithm

- Communication overhead

- Dynamical load balancing

EULAG PARALLELIZATION
ISSUES:

 Data partitioning

 Load balancing

 Code portability

 Parallel I/O

 Debugging

 Performance profiling

HISTORY:

Compiler parallelization – 1996-1998, Vector Crays J90 at NCAR

MPP/SMP – PVM/SHMEM version at Cray T3D (W. Anderson 1996)

MPP – use MPI & porting SHMEM to 512 PE Cray T3E at NERSC (Wyszogrodzki 1997)

MPP – porting EULAG on number of systems HP, SGI, NEC, Fujitsu, 1998-2005

SMP – attempt to use OpenMP by M. Andrejczuk ~ 2004 ???

MPP – porting EULAG on BG/L at NCAR and BG/W IBM Watson in Yorktow Heights

CURRENT STATUS:

PVM – not supported anymore, no systems available with PVM

SHMEM – partially supported (global, point to point), no systems currently available

MPI – fully supported and developed

Open MP – not supported, planned for future development

EULAG PORTABILITY
PREVIUS IMPLEMENTATIONS:

Serial processor workstations: Linux, Unix

Vector computers with automatic compiler parallelizations: Crays J90, ….

MMP systems: Cray t3D, Cray T3E (NERSC 512 PE), HP Exemplay, SGI Origin 2000, NEC

(ECMWF), Fujuttsu

SMP systems: Cray t3D, Cray T3E , SGI Origin 2000, IBM SP

Recent systems at NCAR (last 3 years):

IBM power4 BG/L 2048 CPUs (frost)

IBM power6 4048 CPUs (bluefire) 76.4 TFp/s, TOP#25?

IBM p575+ 1600 CPUs (blueice)

IBM p575 576 CPUs (bluevista)

IBM p690 1600 CPUs (bluesky)

Other recent supercomputers:

IBM power4 BG/W 40000 CPUs (Yorktown Heights)

l'Université de Sherbrooke - Réseau Québécois de Calcul de Haute Performance (RQCHP):

Dell 1425SC Cluster

Dell PowerEdge 750 Cluster

PROBLEMS:

Linux clusters, different compilers, no EULAG version working currently in double precision

Data decomposition in EULAG

i - index

halo boundaries in x direction

(similar in y direction – not shown)

 CPU CPU CPU CPU

 CPU CPU CPU CPU

 CPU CPU CPU CPU

 CPU CPU CPU CPU
j
-

in
d

e
x

 2D horizontal domain grid decomposition

 No decomposition in vertical Z-direction

 Hallo/ghost cells for collecting information from neighbors

 Predefined halo size for array memory allocation

 Selective halo size for update to decrease overhead

Typical processors configuration

 Computational 2D grid is mapped onto an 1D grid of processors

 Neighboring processors exchange messages via MPI

 Each processor know its position in physical space (column, row,

boundaries) and location of neighbor processors

EULAG – Cartesian grid configuration

 Parallel subdomians ALWAYS assume that grid has cyclic BC in both X and Y !!!

 In Cartesian mode, the grid indexes are in range: 1…N, only N-1 are independent !!!

 F(N)=F(1) –> periodicity enforcement

 N may be even or odd number but it must be divided by number of processors in X

 The same apply in Y direction.

 In the setup on the left

 nprocs=12

 nprocx = 4, nprocy = 3

 if np=11, mp=11

 then full domain size is

 N x M = 44 x 33 grid points

EULAG Spherical grid configuration
with data exchange across the poles

 Parallel subdomians in longitudinal direction ALWAYS assume that grid has cyclic BC !!!

 At the poles processors must exchange data with appropriate across the pole processor.

 In Spherical mode, there is N independent grid cells F(N) F(1) … required by load

balancing and simplified exchange over the poles -> no periodicity enforcement

 At the South (and North) pole grid cells are placed at y/2 distance from the pole.

 In the setup on the left

 nprocs=12

 nprocx = 4, nprocy = 3

 if np=16, mp=10

 then full domain size is

 N x M = 64 x 30 grid points

send_recv +

8 different

types

send/recv

 Blocking: Processor sends and waits until everything is received.
 Nonblocking: Processor sends and does not wait for data to be received.

standard send isend

buffered bsend ibsend

synchronous ssend issend

ready rsend irsend

BLOCKING NONCKING

MPI point to point communication functions

MPI collective communication functions

 broadcast

 gather

 scatter

 reduction operations

 all to all

 barrier synchronization point between all MPI processes

EULAG reduction subroutines

PE2

1

2

MPI_COMM_WORLD

PE1 PEN

N-1

N

PEN-1 ……

g
lo

b
m

a
x, g

lo
b
m

in
, g

lo
b
s
u
m

Global maximum, minimum or sum

……

…… ……

EULAG I/O
Requirements of I/O Infrastructure:

• Efficiency

• Flexibility

• Portability

I/O in EULAG
• full dump of model variables in raw fortran binary format

• short dump of basic variables for postprocessing

• Netcdf output

• Parallel Netcdf

• Vis5D output in parallel mode

• MEDOC (SCIPUFF/MM5)

PARALLEL MODE
• PE0 collects all sub-domains and save to hard drive

• Memory optimization in parallel mode (sub-domains are sequentially
saved without creating single serial domain, require reconstruction of
the full domain in post processing mode)

CONS: full output need to be self-defined, lack of time stamps

Performance and scalability

Weak Scaling

 Problem size/proc fixed

 Easier to see Good Performance

 Beloved of Benchmarkers, Vendors, Software Developers –Linpack,

Stream, SPPM

Strong Scaling

 Total problem size fixed.

 Problem size/proc drops with P

 Beloved of Scientists who use computers to solve problems. Protein

Folding, Weather Modeling, QCD, Seismic processing, CFD

EULAG SCALABILITY
Held-Suarez test on the sphere and Magneto-Hydrodyna

mic (MHD) simulations of the solar convection
NCAR’s IBM POWER 5 SMP

Grid sizes:

LR (64x32)

MR (128x64)

HR (256x128)

Each test case use the same numbe

r of vertical levels (L=41).

 Bold dashed line - ideal

scalability, wall clock time scales

like 1/NPE.

 Excellent scalability up to

number of processors

NPE=sqrt(N*M): 16 PE’s (LR) 64

(MR), 256 (HR)

 Max speedups - 20x; 90x; 205x

 Performance sensitive to the

particular 2D grid decomposition weakening of the scalability is due to increased ratio of the

amount of information required to be exchanged between

processors to the amount of local computations

EULAG SCALABILITY
Benchmark results from the Eulag-MHD code at

l'Université de Sherbrooke - Réseau Québécois de Calcul de Haute Performance (RQCHP),
Dell 1425SC and Dell PowerEdge 750 Clusters

Curves corresponding to different machines and two compilers running on the same machine.

Weak scaling: code performance follow the best possible result where the curve stays flat.

Strong scaling: communication/calculation ratio goes up with number of used processors.

Performance reach best solution (a linear growth), for the largest runs on the biggest machine.

Top500 machines exceed 1 Tflop/s (2004)

1 TF = 1000,000,000,000 Flops

TERA SCALE systems became commonly available !

TOWARD PETA SCALE COMPUTING

2004

2006

2007

IBM Blue Gene system was leader in HPC since 2004

2008 first peta system at LANL

LANL (USA):

IBM Blade Center QS22/LS21 Cluster (RoadRunner)

Processors: PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 Ghz

Advanced versions of the processor in the Sony PlayStation 3

122400 cores, peak performance 1375.78 Tflops (sustained 1026 Tflops)

Earth Simulator – used to be # 1 on 500 list ~ 35 TF/s on Linpack

IBM BG/L 16384 nodes (Rochester, 2004)

Linpack: 70.72 TF/s sustained, 91.7504 TF/s peak

Cost/performance optimized

Low power factor

BLUE GENE SYSTEM DESCRIPTION

Blue Gene BG/L - hardware

Power and cooling

700MHz IBM PowerPC 440 processors

Typical 360 Tflops machine ~ 10-20 megawatts

BlueGene/L uses only 1.76 megawatts

High ratios:

- power / Watt

- power / square meter of floor space

- power / $$$

Reliability and maintenance

20 fails per 1,000,000,000 hours =

1 node failure every 4.5 weeks

 Chip Compute card Node card Rack System
 2 CPU cores 2 chips 16 comp cards 32 node cards 64 raks
 1x2x1 32 chips 4x4x2 8x8x16 64x32x32
 Peak 5,6 GF/s 11.2 GF/s 180 GF/s 5.6 TF/s 360 TF/s
 Memory 4 MB 1 GB 16 GB 512 GB 32 TB

Massive collection of low-power CPUs instead of

a moderate-sized collection of high-power CPUs

Mode 1 (Co-processor mode - CPM):
one process per compute node

CPU0 does all the computations

CPU1 does the communications

Communication overlap with computation

Peak comp perf is 5.6/2 = 2.8 Gflops

Mode 2 (Virtual node mode - VNM):
one process per processor

CPU0, CPU1 independent “virtual tasks”

Each does own computation and communication

The two CPU’s talk via memory buffers

Computation and communication cannot overlap

Peak compute performance is 5.6 Gflops

Math Library:

ESSL: dense matrix kernels

MASSV: reciprocal, square root, exp, log

FFT: Parallel Implementation developed by Blue Matter Team

Blue Gene BG/L – main characteristics

NETWORK:

Torus Network (High-speed, high-bandwidth network, for point-to-point communication)

Collective Network (Low latency, 2.5 s, does MPI collective ops in hardware)

Global Barrier Network (Extremely low latency, 1.5 s)

I/O Network (Gigabit Ethernet)

Service Network (Fast Ethernet and JTAG)

SOFTWARE:

MPI (MPICH2)

IBM XL Compilers for PowerPC

3-d Torus

Torus topology instead of crossbar: 64 x 32 x 32 3D torus of compute nodes.

Each compute node is connected to its six neighbors: x+, x-, y+, y-, z+, z-

Compute card is 1x2x1

Node card is 4x4x2 (16 compute cards in 4x2x2 arrangement)

Midplane is 8x8x8 (16 node cards in 2x2x4 arrangement)

Supports cut-through routing, with deterministic and adaptive routing.

Each uni-directional link is 1.4Gb/s, or 175MB/s.

Each node can send and receive at 1.05GB/s.

Variable-sized packets of 32,64,96…256 bytes

Guarantees reliable delivery

Blue Gene BG/L – torus geometry

Node partitions are created when jobs are scheduled for execution

Processes are spread out in a pre-defined mapping (XYZT)

Alternate and sophisticated mappings are possible

A contiguous, rectangular subs
ection of the compute nodes

User may specify desired processor

configuration when submitting job:

e.g. submit lufact 2x4x8

partition of 64 compute nodes, with shape

2 (on x-axis) by 4 (on y-axis) by 8 (on z-axis)

Blue Gene BG/L – physical node partition

In MPI, logical process grids are created with MPI_CART_CREATE

The mapping is performed by the system, matching physical topology

EULAG 2D grid decomposition is distributed
over contiguous, rectangular 64 compute
nodes with shape 2x4x8

Each xy-plane is mapped to one column

Within Y column, consecutive nodes are

neighbors

Logical row operations in X correspond

to operations on a string of physical nodes

along the z-axis

Logical column operations in Y

correspond to operations on an xyplane

Row and column communicators are

created with MPI_CART_SUB

Blue Gene BG/L – mapping processes to nodes

EULAG SCALABILITY on BGL/BGW

Benchmark results from the Eulag-HS experiments
NCAR/CU BG/L system 2048 processors (frost),

IBM/Watson Yorktown heights BG/W … up to 40 000 PE, only 16000 available during experiment

All curves except 2048x1280 are performed on BG/L system.

Numbers denote horizontal domain grid size, vertical grid is fixed l=41

The Elliptic solver is limited to 3 iterations (iord=3) for all experiments

Red lines – coprocessor mode, blue lines virtual mode

EULAG SCALABILITY on BGL/BGW

Benchmark results from the Eulag-HS experiments
NCAR/CU BG/L system 2048 processors (frost),

IBM/Watson Yorktown heights BG/W … up to 40 000 PE, only 16000 available during experiment

Red lines – coprocessor mode, blue lines virtual mode

CONCLUSIONS:

EULAG is scalable and perform well on available supercomput

ers

SMP implementation based on Open MP is needed

Additional work is needed to run model efficiently at PETA scal

e

- profiling to define bottlenecks

- 3D domain decomposition

- optimized mapping for increase locality

- preconditioning for local elliptic solvers

- parallel I/O

