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Parallelization - methods 

 

Shared Memory (SMP) :  

 Automatic Parallelization 

 Compiler Directives (OpenMP) 

 Explicit Thread Programming (Pthreads, SHMEM) 

 

Distributed Memory (DMP) / Massively Parallel Processing (MPP) :  

 PVM – currently not supported 

 SHMEM – Cray T3D, Cray T3E, SGI Origin 2000 

 MPI – highly portable  

 

Hybrid Models:  MPI+OpenMP 



SMP Architecture 

Performance and scalability issues: 

 Synchronization overhead 

 Memory bandwidth 

Processor Processor 

Cache Cache 

Bus / Crossbar Switch 

Memory I/O 

 Common (shared) memory for tasks communication (threads). 

 Memory location fixed during task access 

 Synchronous communication between threads. 

…… 

thread thread 

All computational 
threads in a group 
belong to a single 
process 

Process 



MPP Architecture 

 Each node has its own memory subsystem and I/O. 

 Communication between nodes via Interconnection network  

 Exchange message packets via calls to the MPI library  

 

Interconnection Network 

…… 

Node Node 

MPI Library 

Performance and scalability issues: 

Overhead ~ to the size and number of packets 

Good scalability on large processor systems. 
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 Each task is a Process. 
 

 Each Process Executes 
the same program and 
has its own address 
space 
 

 Data are exchanged in 
form of message 
packets via the 
interconnect (switch, or 
shared memory) 
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Optimize performance on "mixed-mode" hardware (e.g. IBM SP, Linux Superclusters) 

Optimize resource utilization (I/O) 

 MPI is used for "Inter-node" communication,  

 Threads (OpenMP / Pthreads) are used for "Intra-node" communication 



OpenMP 

Components to specify shared memory parallelism: 
 Directives  
 Runtime Library   
 Environment Variables  
 
 

PROS: 
 Portable / multi-platform working on major hardware architectures  
 Systems including UNIX and Windows NT 
 C/C++ and FORTRAN implementations   
 Application Program Interface (API) 

 
CONS:  

 Scoping - variables in a parallel loop: private or shared? 
 Parallel loops may calls subroutines, include many nested do loops 
 Non parallelizable loops - automatic compiler parallelization? 
 Not easy to get optimal performance:  
    Effective use of directives, code modification, new computational algorithms 
 Need to reach more than 90% of parallelization to hope for good speedup 

EXAMPLE:   

                             !$OMP PARALLEL DO PRIVATE (I) 

do i=1,n 

     a(i) = a(i)+1 

 end do 

       !$OMP END PARALLEL DO 



Message Passing Interface - MPI 

MPI – library, not a language 
Library of around 100 subroutines ( … most codes uses less than 10) 

 
Message-passing: collection of processes communicating via messages: 

 Collective or global - group of processes exchanging messages 
 Point-to-point - pair of processes communicating  with each other 

 

MPI 2.0 standard released in April 1997, extention to MPI 1.2 
 Dynamic Process Management (spawn) 
 One-sided Communication  (put/get) 
 Extended Collective Operations  
 External Interfaces  
 Parallel I/O (MPI-I/O) 
 Language Bindings (C++ and FORTRAN-90) 

 
Parallelization strategies: 

 Choose data decomposition / domain partition 
 Map model sub-domains to processor structure 
 Check data load balancing  
 Use parallel algorithms if possible (e.g. parallel FFT) 
 Set up Communication 



MPP vs SMP  

Advantages Disadvantages 

Compiler 

 
- Very easy to use 

- No rewriting of code 
- Marginal performance 

- Loop level parallelization 

Open MP - Easy to use 

- Limited rewriting of code 

- OpenMP - standard  

- Average performance 

 

MPI - High performance 

- Portable 

- Scales outside a Node 

 

- Extensive code rewriting 

- May have to change algorithm 

- Communication overhead 

- Dynamical load balancing 



EULAG PARALLELIZATION 
ISSUES:  

 Data partitioning 

 Load balancing 

 Code portability 

 Parallel I/O 

 Debugging 

 Performance profiling 

 

HISTORY: 

Compiler parallelization – 1996-1998, Vector Crays J90 at NCAR 

MPP/SMP – PVM/SHMEM version at Cray T3D (W. Anderson 1996) 

MPP – use MPI & porting SHMEM to 512 PE Cray T3E at NERSC (Wyszogrodzki 1997)  

MPP – porting EULAG on number of systems HP, SGI, NEC, Fujitsu, 1998-2005 

SMP – attempt to use OpenMP by M. Andrejczuk ~ 2004 ???  

MPP – porting EULAG on BG/L  at NCAR and BG/W IBM Watson in Yorktow Heights 

 

CURRENT STATUS: 

PVM – not supported anymore, no  systems available with PVM 

SHMEM – partially supported (global, point to point), no systems currently available 

MPI – fully supported and developed 

Open MP – not supported, planned for future development  

 



EULAG PORTABILITY  
PREVIUS IMPLEMENTATIONS: 

Serial processor workstations: Linux, Unix 

Vector computers with automatic compiler parallelizations: Crays J90, …. 

MMP systems: Cray t3D, Cray T3E (NERSC 512 PE), HP Exemplay, SGI Origin 2000, NEC 

(ECMWF), Fujuttsu 

SMP systems: Cray t3D, Cray T3E , SGI Origin 2000, IBM SP 

 

Recent systems at NCAR (last 3 years): 

IBM power4 BG/L 2048 CPUs (frost)  

IBM power6         4048 CPUs (bluefire) 76.4 TFp/s, TOP#25? 

IBM p575+          1600 CPUs (blueice) 

IBM p575              576 CPUs (bluevista) 

IBM p690            1600 CPUs (bluesky) 

 

Other recent supercomputers: 

IBM power4 BG/W 40000 CPUs (Yorktown Heights) 

l'Université de Sherbrooke - Réseau Québécois de Calcul de Haute Performance (RQCHP):  

Dell 1425SC  Cluster  

Dell PowerEdge 750 Cluster 

 

PROBLEMS: 

Linux clusters, different compilers, no EULAG version working currently in double precision 

 

  



Data decomposition in EULAG 
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 2D horizontal domain grid decomposition 

  No decomposition in vertical Z-direction 

 Hallo/ghost cells for collecting information from neighbors 

 Predefined halo size for array memory allocation 

 Selective halo size for update to decrease overhead 



Typical processors configuration 

  Computational 2D grid is mapped onto an 1D grid of processors 

  Neighboring processors exchange messages via MPI  

 Each processor know its position in physical space (column, row, 

boundaries) and location of neighbor processors 



EULAG – Cartesian grid configuration 

 Parallel subdomians ALWAYS assume that grid has cyclic BC in both X and Y !!!  

 In Cartesian mode, the grid indexes are in range: 1…N, only N-1 are independent !!! 

 F(N)=F(1) –> periodicity enforcement 

 N may be even or odd number but it must be divided by number of processors in X 

 The same apply in Y direction.  

 In the setup on the left  

 nprocs=12 

 nprocx = 4, nprocy = 3 

 if np=11, mp=11 

    then full domain size is  

    N x M = 44 x 33 grid points 



EULAG Spherical grid configuration 
with data exchange across the poles 

  Parallel subdomians in longitudinal direction ALWAYS assume that grid has cyclic BC !!!  

  At the poles processors must exchange data with appropriate across the pole processor.   

  In Spherical mode, there is N independent grid cells F(N) F(1) … required by load 

balancing and simplified exchange over the poles -> no periodicity enforcement 

 At the South (and North) pole grid cells are placed at y/2 distance from the pole. 

 In the setup on the left  

 nprocs=12 

 nprocx = 4, nprocy = 3 

 if np=16, mp=10 

    then full domain size is  

    N x M = 64 x 30 grid points 



send_recv + 

8 different 

types 

send/recv 

 Blocking: Processor sends and waits until everything is received. 
 Nonblocking: Processor sends and does not wait for data to be received. 

 
 

standard send isend 

buffered bsend ibsend 

synchronous ssend issend 

ready rsend irsend 

BLOCKING NONCKING 

MPI point to point communication functions 

MPI collective communication functions 

  broadcast 

  gather 

  scatter 

  reduction operations 

  all to all 

  barrier synchronization point between all MPI processes 



EULAG reduction subroutines 
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Global maximum, minimum or sum 

…… 

…… …… 



EULAG I/O 
Requirements of I/O Infrastructure: 

• Efficiency  

• Flexibility  

• Portability 

 

I/O in EULAG 
• full dump of model variables in raw fortran binary format 

• short dump of basic variables for postprocessing  

• Netcdf output 

• Parallel Netcdf  

• Vis5D output in parallel mode 

• MEDOC (SCIPUFF/MM5)   

 

PARALLEL MODE 
• PE0 collects all sub-domains and save to hard drive  

• Memory optimization in parallel mode (sub-domains are sequentially 
saved without creating single serial domain, require reconstruction of 
the full domain in post processing mode)  

 

CONS: full output need to be self-defined, lack of time stamps 



Performance and scalability 

Weak Scaling 

 

 Problem size/proc fixed 

 Easier to see Good Performance 

 

 Beloved of Benchmarkers, Vendors, Software Developers –Linpack, 

Stream, SPPM 

 

 

 

Strong Scaling 

 

 Total problem size fixed.  

 Problem size/proc drops with P 

 

 Beloved of Scientists who use computers to solve problems. Protein 

Folding, Weather Modeling, QCD, Seismic processing, CFD 



EULAG SCALABILITY  
Held-Suarez test on the sphere and Magneto-Hydrodyna

mic (MHD) simulations of the solar convection  
NCAR’s IBM POWER 5 SMP 

  

Grid sizes:  

LR (64x32) 

MR (128x64)  

HR (256x128)  

Each test case use the same numbe

r of vertical levels (L=41).  

 

  Bold dashed line - ideal 

scalability, wall clock time scales 

like 1/NPE.  

 

 Excellent scalability up to 

number of processors 

NPE=sqrt(N*M): 16 PE’s (LR) 64 

(MR), 256 (HR)  

 

 Max speedups - 20x; 90x; 205x 

 

 Performance sensitive to the 

particular 2D grid decomposition weakening of the scalability is due to increased ratio of the 

amount of information required to be exchanged between 

processors to the amount of local computations 



EULAG SCALABILITY  
Benchmark results from the Eulag-MHD code at   

l'Université de Sherbrooke - Réseau Québécois de Calcul de Haute Performance (RQCHP),  
Dell 1425SC and Dell PowerEdge 750 Clusters  

Curves corresponding to different machines and two compilers running on the same machine.  

 

Weak scaling: code performance follow the best possible result where the curve stays flat.  

Strong scaling: communication/calculation ratio goes up with number of used processors.  

Performance reach best  solution (a linear growth), for the largest runs on the biggest machine. 



Top500 machines exceed 1 Tflop/s (2004) 

1 TF = 1000,000,000,000 Flops 

TERA SCALE systems became commonly available ! 



TOWARD PETA SCALE COMPUTING  

2004 

2006 

2007 

IBM Blue Gene system was leader in HPC since 2004 



2008 first peta system at LANL 

LANL (USA): 

IBM Blade Center QS22/LS21 Cluster (RoadRunner) 

Processors: PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 Ghz 

Advanced versions of the processor in the Sony PlayStation 3 

122400 cores, peak performance 1375.78 Tflops (sustained 1026 Tflops)  



Earth Simulator – used to be # 1 on 500 list ~ 35 TF/s on Linpack 

 

IBM BG/L 16384 nodes (Rochester, 2004) 

Linpack: 70.72 TF/s sustained, 91.7504 TF/s peak 

Cost/performance optimized  

Low power factor 

BLUE GENE SYSTEM DESCRIPTION 



Blue Gene BG/L - hardware 

Power and cooling 

700MHz IBM PowerPC 440 processors  

Typical 360 Tflops machine ~ 10-20 megawatts 

BlueGene/L uses only 1.76 megawatts 

High ratios: 

- power / Watt 

- power / square meter of floor space 

- power / $$$ 

 
Reliability and maintenance 

20 fails per 1,000,000,000 hours =  

1 node failure every 4.5 weeks 

     Chip          Compute card          Node card                     Rack                   System 
   2 CPU cores     2 chips             16 comp cards          32 node cards            64 raks 
                          1x2x1               32 chips 4x4x2             8x8x16                  64x32x32 
  Peak 5,6 GF/s   11.2 GF/s           180 GF/s                    5.6 TF/s                 360 TF/s 
  Memory 4 MB      1 GB                 16 GB                       512 GB                   32 TB 

Massive collection of low-power CPUs instead of 

a moderate-sized collection of high-power CPUs 



Mode 1 (Co-processor mode - CPM): 
one process per compute node 

CPU0 does all the computations 

CPU1 does the communications 

Communication overlap with computation 

Peak comp perf is 5.6/2 = 2.8 Gflops 

 

 

Mode 2 (Virtual node mode - VNM): 
one process per processor 

CPU0, CPU1 independent “virtual tasks” 

Each does own computation and communication 

The two CPU’s talk via memory buffers 

Computation and communication cannot overlap 

Peak compute performance is 5.6 Gflops 

Math Library:  

ESSL: dense matrix kernels 

MASSV: reciprocal, square root, exp, log 

FFT: Parallel Implementation developed by Blue Matter Team 

Blue Gene BG/L – main characteristics 

NETWORK: 

Torus Network (High-speed, high-bandwidth network, for point-to-point communication) 

Collective Network (Low latency, 2.5 s, does MPI collective ops in hardware) 

Global Barrier Network (Extremely low latency, 1.5 s) 

I/O Network (Gigabit Ethernet) 

Service Network (Fast Ethernet and JTAG) 

SOFTWARE: 

MPI (MPICH2) 

IBM XL Compilers for PowerPC  



3-d Torus 

Torus topology instead of crossbar: 64 x 32 x 32 3D torus of compute nodes. 

Each compute node is connected to its six neighbors: x+, x-, y+, y-, z+, z- 

Compute card is 1x2x1 

Node card is 4x4x2 (16 compute cards in 4x2x2 arrangement) 

Midplane is 8x8x8 (16 node cards in 2x2x4 arrangement) 

Supports cut-through routing, with deterministic and adaptive routing.  

Each uni-directional link is 1.4Gb/s, or 175MB/s. 

Each node can send and receive at 1.05GB/s. 

Variable-sized packets of 32,64,96…256 bytes 

Guarantees reliable delivery 

Blue Gene BG/L – torus geometry 



Node partitions are created when jobs are scheduled for execution 

Processes are spread out in a pre-defined mapping (XYZT) 

Alternate and sophisticated mappings are possible 

A contiguous, rectangular subs
ection of the compute nodes 

User may specify desired processor  

configuration when submitting job: 

e.g. submit lufact 2x4x8 

partition of 64 compute nodes, with shape  

2 (on x-axis) by 4 (on y-axis) by 8 (on z-axis) 

Blue Gene BG/L – physical node partition 



In MPI, logical process grids are created with MPI_CART_CREATE 

The mapping is performed by the system, matching physical topology 

EULAG 2D grid decomposition is distributed 
over contiguous, rectangular 64 compute       
nodes with shape 2x4x8 

Each xy-plane is mapped to one column 

Within Y column, consecutive nodes are 

neighbors 

Logical row operations in X correspond  

to operations on a string of physical nodes 

along the z-axis 

Logical column operations in Y               

correspond to operations on an xyplane 

Row and column communicators are     

created with MPI_CART_SUB  

Blue Gene BG/L – mapping processes to nodes 



EULAG SCALABILITY on BGL/BGW 

Benchmark results from the Eulag-HS experiments   
NCAR/CU BG/L system 2048 processors (frost),  

IBM/Watson Yorktown heights BG/W … up to 40 000 PE, only 16000 available during experiment  

All curves except 2048x1280 are performed on BG/L system. 

Numbers denote horizontal domain grid size, vertical grid is fixed l=41 

The Elliptic solver is limited to 3 iterations (iord=3) for all experiments 

Red lines – coprocessor mode, blue lines virtual mode 



EULAG SCALABILITY on BGL/BGW 

Benchmark results from the Eulag-HS experiments   
NCAR/CU BG/L system 2048 processors (frost),  

IBM/Watson Yorktown heights BG/W … up to 40 000 PE, only 16000 available during experiment  

Red lines – coprocessor mode, blue lines virtual mode 



CONCLUSIONS: 

 

EULAG is scalable and perform well on available supercomput

ers 

SMP implementation based on Open MP is needed 

 

Additional work is needed to run model efficiently at PETA scal

e 

- profiling to define bottlenecks 

- 3D domain decomposition 

- optimized mapping for increase locality 

- preconditioning for local elliptic solvers 

- parallel I/O 


