Lidar-Measurement-Integrated Simulation of Wake Turbulence

Takashi Misaka, Shigeru Obayashi

(Institute of Fluid Science, Tohoku University)

Izumi Yamada

(Electronic Navigation Research Institute)

Yoshinori Okuno

(Japan Aerospace Exploration Agency)

EULAG Model Users' Workshop October 7th, 2008

Outline

- > Wake turbulence: measurement & simulation
- Objective of this research
- Lidar data assimilation with 4D-Var method
- Results using lidar measurements at Sendai airport
- Conclusion

Background – Wake turbulence –

J. R. Chambers, NASA SP-2003-4529

- Vortices mainly due to wing-tip and flap vortices
- Determine takeoff and landing separation at airport

Need for efficient control of airport traffic based on weather conditions including wake turbulence

Background – Measurement and Simulation –

Simulate wake vortices under actual weather conditions based on lidar measurement with four-dimensional variational (4D-Var) method

Approach: 4D-Var + Bogus vortex technique

> Validation: Assimilation exp. using virtual lidar data

> Application: Lidar measurements at Sendai airport

Overview of the Method

4D-Var with Lidar Measurement (1)

Flowchart of 4D-Var method

- J. Simulate lidar measurement process during CFD computation (Acquiring virtual lidar measurement)
 - 2. The difference is defined as a cost function:

$$J_{L}(\mathbf{Q}_{0}) = \frac{1}{2} \sum_{i=0}^{N} \left(H_{i}(\mathbf{Q}_{i}) - \mathbf{Y}_{i} \right)^{T} R_{i}^{-1} \left(H_{i}(\mathbf{Q}_{i}) - \mathbf{Y}_{i} \right)$$

→ Retrieval of unsteady flow field which agrees with time-series lidar measurements

4D-Var with Lidar Measurement (2)

Bogus vortex technique: assume a specific vortex structure in the flow field

Bogus vortex compensates insufficient velocity information due to line-of-site measurement of lidar

Sendai Airport

Lidar at Sendai Airport

- ✓ Pulsed Doppler lidar
- ✓ 80 ranges with 30m interval
- ✓ Laser wave length: 1.5µm
- / Laser power: 2W (average)
- ✓ Laser repetition freq: 4kHz

Owned by <u>Electric Navigation</u> <u>Research Institute (ENRI)</u> (Mitsubishi Electric Co. Ltd.)

Computational Setting

Velocity on Measurement Plane

Time History of Circulation

Lidar Measurements
Time history of circulation

Modeling of Sendai Airport (1)

 Reproduced flow field is superimposed on the virtual reality model of airport

Virtual

Modeling of Sendai Airport (2)

Conclusion

- > 4D-Var: lidar + CFD
- Bogus vortex: compensation of LOS velocity
- Lidar (sectional contour)
 - → CFD (3D unsteady flow field)

