PIV- and LDV- measurements of baroclinic wave interactions in a thermally driven rotating annulus

U. Harlander, Th.v. Larcher, K. Alexandrov, and C. Egbers

Department of Aerodynamics and Fluid Mechanics, BTU Cottbus

October 7, 2008

- Equations and boundary conditions
- **Regime Transitions** 3
- Data processing
- Recent results 5
 - Frame co-rotating with cylinder
 - Frame co-rotating with wave
 - I DA observations

Numerical simulations with EULAG

ÐFG

Sketch of thermally driven rotating annulus

Experimental setup

Equations and boundary conditions Regime Transitions Data processing Recent results Numerical simulations with EULAG Outlook

The thermally driven rotating annulus at BTU Cottbus

Experimental setup for PIV observations

Wang, BTU Cottbus 2008

DFG

Experimental setup Equations and boundary conditions
Regime Transitions
Data processing
Recent results
Numerical simulations with EULAG
Outlook

Model

Non-dimensional equations

$$\begin{aligned} \frac{d\mathbf{v}}{dt} &= -\nabla \rho + \nabla^2 \mathbf{v} - Ra\,\theta \mathbf{k} - Ta^{1/2} \mathbf{k} \times \mathbf{v} \\ \frac{d\theta}{dt} &= \frac{1}{Pr} \nabla^2 \theta \\ \nabla \cdot \mathbf{v} &= 0 \end{aligned}$$

Boundary conditions

$$w = 0$$
 and $\frac{\partial \theta}{\partial z} = 0$ at top and bottom
 $v_r = 0$ and $\theta = \theta_i$ at $r = r_i$
 $v_r = 0$ and $\theta = \theta_o$ at $r = r_o$

The heated rotating annulus

meirschaft DFG

Experimental setup Equations and boundary conditions Bedime Transitions	
Data processing Recent results Numerical simulations with EULAG	
Outlook	
Important numbers	

Non-dimensional numbers determine the flow regime

Taylor number
$$Ta = \frac{4 \cdot \Omega^2 \cdot (b-a)^5}{\nu^2 \cdot d}$$

Rayleigh number $Ra = \frac{g\alpha\Delta T(b-a)^3}{\nu\kappa}$
Prandtl number $Pr = \frac{\nu}{\kappa}$
Rossby number $Ro = \frac{4Ra}{PrTa} = \frac{g \cdot d \cdot \alpha\Delta T}{\Omega^2 \cdot (b-a)^2}$

< 一 →

문 ▶ ★ 문

irschaft DFG

Experimental setup Equations and boundary conditions Regime Transitions
Data processing
Numerical simulations with EULAG
Outlook

Fowlis and Hide (1965)

э

DFG

Experimental setup Equations and boundary conditions Regime Transitions
Data processing
Recent results Numerical simulations with EULAG
Outlook

Früh and Read (1997)

æ

EULAG workshop, Bad Tölz, October 7, 2008

イロン イロン イヨン イヨン

Regime transitions

PIV principle

< ロ > < 回 > < 回 > < 回 >

æ

gemeirschaft DFG

PIV principle

ngsgemeinschaft DFG

PIV observation in the inertial frame

Problems

How to switch to co-rotating frame?

 $\vec{v}_c = \vec{v}_i - \vec{\Omega} imes \vec{r}$

How to get rid of the shadow?

• □ ▶ • □ ▶ • □ ▶

Avoiding the shadow zone

EULAG workshop, Bad Tölz, October 7, 2008

The heated rotating annulus

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Results: mean flow

Harlander, Wang, Egbers (2008), proceedings Laser conference, Lisbor

< D > < P > < E > < E</p>

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Proper Orthogonal Decomposition (POD)

Different names for the same thing: POD, EOF, PCA, Factor Analysis, Karhunen-Loéwe-Expansion, · · ·

Data matrix

Covariance matrix

Explained variance γ of $\mathbf{v}_{\mathbf{j}}$ is defined as $\gamma := \frac{\lambda_j}{\sum_{i=1}^{p} \lambda_i}$

< ロ > < 同 > < 回 > < 回 >

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Results: mean flow

Laser slice

PIV: time mean flow

<ロ> <回> <回> <回> < 回</p>

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

LDA principle

Source http://laum-vld.univ-lemans.fr

(日)

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

LDA data

Azimuth Φ=0-2π

Frame co-rotating with cylinder Frame co-rotating with wave LDA observations

LDA data

DFG

LDA observations

LDA data

<ロ> <四> <四> <豆> <三</p>

Differentially heated periodic channel (Simulation by Andreas Dörnbrack),

EULAG workshop, Bad Tölz, October 7, 2008

Future activities

• Combining PIV and thermography: can we estimate velocity from temperature?

- Breaking azimuthal symmetry of the annulus: still regular flows?
- Irregular regime: is the wave breaking symmetric?

Experimental setup Equations and boundary conditions Regime Transitions Data processing Recent results Numerical simulations with EULAG Outlook	
--	--

Acknowledgement

• Our work is part of the priority program **MetStröm** by the Deutsche Forschungsgemeinschaft. Financial support is gratefully acknowledged.

→ E → < E</p>

< A >