On forward in time differencing: an unstructured mesh framework

Joanna Szmelter Loughborough University UK Piotr Smolarkiewicz NCAR Colorado USA

Edge based data Finite Volume

Smolarkiewicz, Szmelter JCP 2005

Edge based data structure

- ⓒ Flexible mesh adaptivity and hybrid meshes
 - ⓒ Low storage
- ⓒ Easy generalisation to 3D, vectorisation, parallelisation, mesh agglomeration
- Control Con

More expensive operations than <u>*I,J,K*</u>

MPDATA BASIC SCHEME

ITERATED UPWIND

- Calculate normal velocity v_j^{\perp}
- Calculate fluxes

$$F_j^{\perp} = [v_j^{\perp}]^+ \Psi_i^n + [v_j^{\perp}]^- \Psi_j^n$$

• Update field

$$\Psi_i^* = \Psi_i^n - rac{\delta t}{\mathcal{V}_i} \sum_{j=1}^{l(i)} F_j^{\perp}$$

FIRST ORDER UPWIND

• Calculate antidiffusive pseudo velocity

$$\hat{v}_j^{\perp} = |v_j^{\perp}| \frac{|\Psi_j^*| - |\Psi_i^*|}{|\Psi_j^*| + |\Psi_i^*| + \varepsilon} - \frac{\delta t}{2} v_j^{\perp} \left(\mathbf{v} \cdot \frac{\nabla |\Psi^*|}{|\Psi^*|} + \nabla \cdot \mathbf{v} \right)_{S_j}$$

• Calculate fluxes

$$F_j^* = [\hat{v}_j^{\perp}]^+ \Psi_i^* + [\hat{v}_j^{\perp}]^- \Psi_j^*$$

 \bullet Update field

$$\widetilde{\Psi}_i^{n+1} = \widetilde{\Psi}_i^* - \frac{\delta t}{\mathcal{V}_i} \sum_{j=1}^{l(i)} F_j^*$$

FIRST ORDER UPWIND

Structured v Unstructured

Scheme	Max	Min	L_{∞}	L_2
MPDATA FD	2.18	0.	2.00	0.47×10^{-3}
MPDATA FV squares	2.18	0.	2.00	0.47×10^{-3}
MPDATA FV triangles, $\delta t = 0.1$	2.19	0.	1.92	0.47×10^{-3}
MPDATA FV triangles, $\delta t = 0.061$	2.08	0.	2.09	0.52×10^{-3}
Upwind FD	0.27	0.	3.76	1.21×10^{-3}
Upwind FV squares	0.28	0.	3.76	1.04×10^{-3}
Upwind FV triangles	0.25	0.	3.68	1.06×10^{-3}
Leapfrog FD	3.16	-0.62	1.68	0.62×10^{-3}
Leapfrog FV squares	3.11	-0.67	1.71	0.64×10^{-3}
Leapfrog FV triangles	3.11	-0.69	1.74	0.65×10^{-3}

CONVERGENCE OF FINITE-VOLUME MPDATA ON UNSTRUCTURED MESH

CONVERGENCE OF FINITE-VOLUME MPDATA ON UNSTRUCTURED SKEWED MESH

REVOLUTION OF A SPHERE AROUND THE DIAGONAL OF A DOMAIN

$$\frac{\partial \Phi}{\partial t} + \nabla \bullet (\mathbf{V} \Phi) = \mathbf{R}$$

NFT MPDATA: a general template $\Phi_i^{n+1} = \Phi_i^* + 0.5\delta t \mathbf{R}_i^{n+1}$ $\Phi^* \equiv \mathcal{A}(\Phi^n + 0.5\delta t \mathbf{R}^n, \widehat{\mathbf{V}}^{n+1/2})$

 $R^{n+1} = R(t+\delta t) + \mathcal{O}(\delta t^3)$

$$\forall_i \quad \Phi_i^{n+1, \ \mu} = \Phi_i^* + 0.5 \delta t \mathbf{R}_i^{n+1, \ \mu-1} \qquad \mu = 1, .., m$$

Explicit integration

Compressible flows

(Smolarkiewicz, Szmelter JCP 2008 published on line)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \bullet (\mathbf{V}\rho) &= 0 \\ \frac{\partial q^{I}}{\partial t} + \nabla \bullet (\mathbf{V}q^{I}) &= -\frac{\partial p}{\partial x^{I}} \\ \frac{\partial e}{\partial t} + \nabla \bullet (\mathbf{V}e) &= -p\nabla \bullet \mathbf{V} \end{aligned}$$
 Internal Energy Equation
$$\frac{\partial \Theta}{\partial t} + \nabla \bullet (\mathbf{V}\Theta) &= 0 \end{aligned}$$
 Potential Temperature Equation

$$\frac{\partial E}{\partial t} + \nabla \bullet (\mathbf{V}E) = -\nabla \bullet (\mathbf{V}p) \qquad \qquad \text{Classical Total Energy Equation}$$

$$\frac{\partial E}{\partial t} + \nabla \bullet (\widetilde{\mathbf{V}}E) = 0 \quad \widetilde{\mathbf{V}} \equiv \mathbf{V}(1 + p/E) \text{ Modified Total Energy Equation}$$

Supersonic flows

ADAPTIVITY with a refinement indicator based on MPDATA lead error

(Szmelter, Smolarkiewicz IJNMF 2005)

Mesh movement

Point enrichment

Transonic flow

NACA012 M=0.85 α=1.25°

CONVERGENCE STUDY

MPDATA - NFT EULER SOLVER

M=0.5

δ_E	MPDATA	L ₂ UPWIND		L_1
$4.47 \cdot 10^{-2}$	$4.87 \cdot 10^{-3}$	$(5.47 \cdot 10^{-3})$	$1.48 \cdot 10^{-3}$	$(1.97 \cdot 10^{-3})$
$3.10 \cdot 10^{-2}$	$3.58 \cdot 10^{-3}$	$(4.18 \cdot 10^{-3})$	$1.19 \cdot 10^{-3}$	$(1.73 \cdot 10^{-3})$
$2.19 \cdot 10^{-2}$	$1.64 \cdot 10^{-3}$	$(2.83 \cdot 10^{-3})$	$7.04 \cdot 10^{-4}$	$(1.51 \cdot 10^{-3})$
$1.54 \cdot 10^{-2}$	$1.01 \cdot 10^{-3}$	$(2.17 \cdot 10^{-3})$	$4.36 \cdot 10^{-4}$	$(1.21 \cdot 10^{-3})$
$1.07 \cdot 10^{-2}$	$6.24 \cdot 10^{-4}$	$(1.58 \cdot 10^{-3})$	$2.38 \cdot 10^{-4}$	$(9.01 \cdot 10^{-4})$
$7.62 \cdot 10^{-3}$	$3.38 \cdot 10^{-4}$	$(1.19 \cdot 10^{-3})$	$1.25 \cdot 10^{-4}$	$(6.90 \cdot 10^{-4})$
$5.35 \cdot 10^{-3}$	$1.77 \cdot 10^{-4}$	$(8.57 \cdot 10^{-4})$	$6.61 \cdot 10^{-5}$	$(5.10 \cdot 10^{-4})$
$3.78 \cdot 10^{-3}$	$8.50 \cdot 10^{-5}$	$(6.06 \cdot 10^{-4})$	$2.92 \cdot 10^{-5}$	$(3.65 \cdot 10^{-4})$
$2.67 \cdot 10^{-3}$	$4.66 \cdot 10^{-5}$	$(4.34 \cdot 10^{-4})$	$1.79 \cdot 10^{-5}$	$(2.64 \cdot 10^{-4})$

Flow past a cylinder M=0.38

Flow past a cylinder M=0.38 --- Entropy deviation triangular meshes

Flow past a cylinder							
Equations; MPDATA	${\it Mach~(Min,Max)}$	Pressure (Min,Max)	Σ (Min,Max)				
Structured 128×33 O-grid							
internal energy (16)	0.00000, 0.91	0.64, 1.11	-0.00002, 0.00021				
total energy (17)	0.00000, 0.91	0.62, 1.11	-0.00005, 0.00081				
total energy (18)	0.00000, 0.91	0.63, 1.11	-0.00022, 0.00125				
potential temp. (19)	0.00000, 0.91	0.62, 1.11	-0.00000,0.00001				
Unstructured triangular mesh							
internal energy (16)	0.00001,0.90	0.64, 1.11	-0.00037, 0.00053				
total energy (17)	0.00000,0.90	0.63, 1.11	-0.00098, 0.00247				
total energy (18)	0.00000,0.90	0.63, 1.11	-0.00130, 0.00406				
potential temp. (19)	0.00000,0.90	0.62, 1.11	-0.00005,0.00005				
Scheme; after [52]	Mach (Min,Max)	Pressure (Min,Max)	Σ (Min,Max)				
MUSCL	0.0001 ,0.82	0.67,1.10	-0.0004 ,0.048				
Abgrall's blended	0.0001 ,0.89	0.64, 1.11	0.0 ,0.009				
LDA	0.0, 0.94	0.62, 1.10	-0.001 ,0.010				

3D Spherical wave; Analytical solution --- Landau & Lifshitz

З.

Implicit integration

Incompressible flows

Incompressible flows

Re=200. Strouhal number =183

Re=100. Strouhal number =163

Incompressible flows --- multi-connected domains

2D – non-hydrostatic model Incompressible Boussinesq ILES

> Orographically forced atmospheric gravity waves

Fr < *Fr*_{critical} *vertical wave propagation*

Fr > Fr_{critical} wave breaking

Flows on a Sphere ---Geospherical coordinates

Shallow water equations

Shallow water equations

Shallow water equations

Zonal flow over a cone

Potential for modelling of multi-connected domains and easy implementation of mesh adaptivity. (*David Parkinson*)

(*Treatment of hanging nodes & hybrid meshes Szmelter et al Comp. Meth. Appl. Mech. Eng 92*)

CONCLUSIONS

- Presented work opens avenues to construct a flexible edge-based clone of EULAG and to study unstructured meshes performance for all-scale atmospheric flows.
- Main new effort lies in mesh generation, visualisation and parallelisation.

