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Turbulence is ubiquitous…
(Van Dyke, Parabolic P.1982)

Re=2300; water jet in water
L / λk ~ Re3/4 ~ 330
λk is Kolmogorov microscale 

(Tennekes and Lumley, MIT P. 1972)



ubiquitous,cont.

Re ~ 3 billion 
107L /λk ~ Re3/4 ~

T /τ k ~ Re1/2 ~ 50,000

(http://vulcan.wr.usgs.gov/Imgs/Jpg/MSH/Images)



Extended “Moore’s Law” for MHD simulations
(Crowley, SIAM News 2004)



GA in Computational Models, cont.GA in Computational Models, cont.

In fusion simulations, it is anticipated 
that GA will contribute to model speed-
up more than hardware improvements
(Sipics 2006 SIAM News)



GA in Computational Models, cont.GA in Computational Models, cont.
• Consider an example from general relativity

A test particle free falls into
a black hole:

1. From the particle’s point of 
view, proper time τ, it’s pas-
sage through the horizon is 
swift.

V = 2 M / r

2. From the distant universe at rest, coordinate time t, the particle 
appears to approach the horizon asymtotically, and NEVER reaches it 
in finite time.

V = (1− 2M /r) 2M /r ≈ Δr /(2M)

“Time is defined so that motion looks 
simple” (Misner et.al, Freeman P. 1973). dτ = (1-2M/r)1/2 dt



GA in Computational Models, concludedGA in Computational Models, concluded

BEST COORDINATES:BEST COORDINATES:
• make dynamics look “simple”by redefining space
• think inner and outer scales in spirit of perturbation

theory (Holmes, Springer-Verlag P. 1995)

• GA attempts to approximate best 
coordinates
(i) reduces computational resources needed for a given 
resolution ←→ resolves smaller scales for a given compu-
tational resource

(ii)  solution better reveals relevant physics

Consider GA an essential featureessential feature



GA in EULAGGA in EULAG
Introduce coordinate transformation

(Prusa & Smolarkiewicz, JCP 2003)

where : physical space
and : transformed space

are physical and transformed computational domains

( t ,x , y ,z ) = t, E(t, x,y),D(t, x, y),C(t, x, y,z)( )

  

( t, x, y, z ) ∈ D p ⊆ S p

( t , x , y , z ) ∈ Dt ⊆ S t

  Dp , Dt

• Physical problem is posed in physical space, Sp. The coordinates 
(t,x) describing Sp are stationarystationary and orthogonalorthogonal

• Physical problem is solved in transformed space, St. The coordi-
nates describing St are nonstationary and nonorthogonal as 
viewed from Sp

( t ,x )



EULAG over., cont.

˜ G j
k := g jj ∂x k /∂x j( )•• Metric coefficients:Metric coefficients:

(““solenoidalsolenoidal”” as described in St)v s
k

(““contravariantcontravariant”” = advection as described in St)v ∗
k

•• 3 velocities: 3 velocities: v v jj ((““physicalphysical”” as described inas described in SSpp))



•• VelocitiesVelocities for for SSp p spherical spherical 
coordinatescoordinates

physical: physical: V V = = uueeλλ�� ++ vveeφφ ++wweerr
= = uuccii�� ++ vvcc jj ++wwcc kk

EULAG velocities, cont. er,w
eφ,v

VV
eλ,u

kk,,wwcc

jj,,vvcc

ii,,uuccu = −uc sinλ + vc cosλ (zonal)
v = −uc sinφ cosλ − vc sinφ sinλ + wc cosφ (meridional)
w = uc cosφ cosλ + vc cosφ sinλ + wc sinφ (radial)

contravariant:
(where ΓΓ==1+1+z/Rz/Roo , λRRoo=x, =x, φRRoo=y, z =r=y, z =r--RRoo )

u∗ = u /(Γcosφ), v∗ = v /Γ, w∗ = w



ContravariantContravariant is analytically most fundamental form

EULAG velocities, cont.

v ∗
k

PhysicalPhysical is most easily measuredvk = gkkv∗k

v ∗
i

:= dx i

dt 
= v∗i ∂x i

∂x j

=
∂x i

∂t
+ u∗ ∂x i

∂x
+ v∗ ∂x i

∂y
+ w∗ ∂x i

∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

SolenoidalSolenoidal is convenient for anelastic continuity v s
k

=
∂x i

∂t
+ v s

i∂x i

∂t

↓↓ grid speedgrid speed



•• Metric tensorsMetric tensors for Sp: (Cartesian)
gjk=0 for j ≠ k

(polar cylindrical,
Γ = r / Ro)

(spherical)

gk

EULAG metrics, cont.

k = δkk

gkk = δk1 + δk2Γ2 + δk3

gkk = δk1(Γcosφ)2 + δk2Γ2 + δk3

Conjugate metric tensorsConjugate metric tensors for Sp:  gkk =gkk
-1

Conjugate metric tensorConjugate metric tensor for for SStt::

g mn = gkk ∂x m

∂xk
∂x n

∂xk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ → g 12 = D,y E,y + D,x E,x /cos2 φ( )Γ−2, ...



•• JacobiansJacobians for for SSpp , G = |g, G = |gjkjk||1/2 1/2 ::
GG=1=1 (Cartesian), ΓΓ (polar cylindrical), and 

ΓΓ22coscosφφ (spherical coordinates)

EULAG metrics, cont.

G = G ′ G = G (G oG xy )JacobianJacobian for for SStt
is separableis separable::

EXTENDED GALEXTENDED GAL--CHENCHEN
((WediWedi & & SmolarkiwiczSmolarkiwicz, , 
JCPJCP 2004) 2004) 

•• �V�Vertical mapping contributionertical mapping contribution

G o =
H(t,x,y) − zs(t, x,y)

Ho

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dC
dξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1



where is a similarity 
variable that 
collapses the 

dependency of C(t,x,y,z) onto that of a single 
independent variable

EULAG metrics, cont.

z = C(ξ); ξ = Ho
z − zs
H − zs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

•• Horizontal mapping:Horizontal mapping:

where are the mappings 
  G xy = E ,x D ,y − D ,x E ,y ( )= E,xD,y − D,x E,y( )−1

  (E, D)

  (x, y) = (E( t , x , y ),D (t , x , y )( )



Metric identities
1.1. KroneckerKronecker Delta (KD) identities:    Delta (KD) identities:    

(Prusa and Gutowski, IJNMF 2006)

∂x m

∂x k
= δ k

m , x m = x m (x j ) →
∂x m

∂x j
∂x j

∂x k
= δ k

m

→ v *
m ∂x j

∂x m
= v*k ∂x m

∂xk
∂x j

∂x m
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ v*k

δk
j

Use of the KD identities is ubiquitous Use of the KD identities is ubiquitous 
in tensor manipulationsin tensor manipulations→ v *

m ∂xk

∂x m
= v*k

Why are these important?Why are these important? Consider computation 
of the contravariant velocity:

v *
m

= v*k ∂x m

∂xk



identities, cont.
How are KD How are KD indentitiesindentities implemented?implemented?

Consider the case m = 1, k = 0:

case m = 1, k = 1: , … E,xE ,x + E,yD ,x =1

∂x 1

∂x j
∂x j

∂x 0
= δ 0

1 →
∂x 
∂x j

∂x j

∂t 
= 0

  → E,t + E,xE ,t + E,yD ,t + E,zC,t = 0
↓↓ zerozero sincesince

x x = = E(t,x,yE(t,x,y))
__

In general, there are 16 independent KD equations; but given 
the allowed form of the  mapping, only 10 are nontrivial

Solve for :

, …

∂x m /∂x j

  E,t = E , y D ,t − D , y E ,t ( )/Gxy

  E,x = D , y /Gxy



2.   Geometric Conservation Law (GCL) 2.   Geometric Conservation Law (GCL) 
identities: identities: (Prusa and Gutowski, IJNMF 2006) 

EULAG metrics, cont.

Motivation?Motivation? Consider the computation of the 
divergencedivergence of a contravariant vector Fj (e.g., some 
physical flux )F j =α g jk(∂f /∂xk)

Is anything more required for tensor Is anything more required for tensor 
character to be preserved?character to be preserved?

Tensor form in Tensor form in 
physical coordinatesphysical coordinates

∇ • F ≡
1
G

∂
∂x j GF j( )

Tensor form in Tensor form in 
transformed coordinatestransformed coordinates→ ∇ • F ≡ 1

G 
∂

∂x j
G F j( )



EULAG metrics, cont.

→ ∇ • F = ∇ • F − F j G
G 

∂
∂x p

G 
G

∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

∇ • F ≡
1
G

∂
∂x j GF j( ) =

1
G 

G 
G

∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

∂
∂x p

GF j( )

where
F p = α g pk (∂f /∂x k )

=
1
G 

∂
∂x p

G F p( )− F j G
G 

∂
∂x p

G 
G

∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

move parenthetical expression inside derivative

Since in general, the F j are arbitrary, 
invariance of divergence →

G
G 

∂
∂x p

G 
G

∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0

components components j=0,1,2,3j=0,1,2,3
GCL:GCL: ↓↓

GCL is required for GCL is required for conservation lawsconservation laws



IMPLEMENTATION of GA in EULAGIMPLEMENTATION of GA in EULAG

• Vertical mapping is analytically specified, extended 
terrain-following coordinates. Vertical boundaries 
may be computed, however (Wedi & Smolarkiewicz, JCP
2004; Ortiz & Smolarkiewicz, IJNMF 2006) 

• This separability of the horizontal vs. vertical map-
pings translates into the metric identities as well as the 
Jacobian

• Horizontal mappings from  St to Sp may be specified 
analytically, computed numerically, or be a mix 
(hybrid).



•• HORIZONTAL GA: HORIZONTAL GA: 

Numerical transformations

1. 1. BODY FITTED COORDINATESBODY FITTED COORDINATES
of Thompson et.al (JCP 1974), generated 
transformed coordinates          via the numerical 
solution of coupled Poisson equations with Dirichlet
boundary conditions, one for each coordinate:

where P and Q are source functions used to control 
the grid interior

EULAG implementation, cont.

∇2x = P(x, y), ∇2y = Q(x,y)

(x ,y )



horizontal GA, cont.

““ellipticelliptic””
generator generator 
example example 
(albeit solved via 
boundary element 
method; Tsay & Hsu, 
IJNME 1997)



BASIC CONFLICTBASIC CONFLICT arises in GA:
• FLOW FEATURES can require very high resolution 

in isolated, distinct regions

horizontal GA, cont.

Δxmax /Δxmin → larger

• COURANT NUMBER limitations will be set by 
smallest grid interval → adaption in time

Δxmax /Δxmin →  unity

• GRID QUALITY encompasses smoothness, 
orthogonality, monotonicity…(impact TE, (impact TE, Thompson 
& Mastin, ASME 1983; stability)stability)



2. VARIATIONAL METHODS 2. VARIATIONAL METHODS 
used to develop elliptic grid generators (Brackbill
and Saltzman JCP 1982)

ExtremizeExtremize:: →→I = f (

horizontal GA, cont.

x ,y ,x,xx ,xy ,
A
∫ ...)dx dy 

x(x ) = xL + c w(χ)−1dχ
x L

x 

∫→→

1D example:1D example: →→f = w(x )•(xx )
2 /2

∂
∂x 

w ∂x
∂x 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 0

EQUIDISTRIBUTIONEQUIDISTRIBUTION
(Dietachmayer, 
MWR 1992)

weight functionweight function ↑↑

∂f
∂x

−
∂

∂x 
∂f

∂x x 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

∂
∂y 

∂f
∂xy 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + ... = 0

(Weinstock, 
Dover P. 1974)

EulerEuler--Lagrange Lagrange EqEq::



Passive tracer advection at 2 and 5 days: (e) leapfrog 
MM5, (c,d,f) MPDATA with GA (Iselin et. al, MWR 2002,2005)



horizontal GA, cont.

3.  NFT GRID GENERATION3.  NFT GRID GENERATION
advection of grid point densitygrid point density via MPDATA 
(Prusa & Smolarkiewicz, JCP 2003)

∂U /∂x = 0If then the 
NFT solution for mesh 
density,

where 
will be conservative 
and monotone

δx ~ ∂x /∂x 

∂δx
∂t

+∂(Uδx)
∂x = 0

δx
Δx 

x /(2xext )

x(t , x ) /(2xext )



Analytical transformations
1. 1. CONFORMAL MAPPINGCONFORMAL MAPPING

horizontal GA, cont.

Linear fractional transformation Linear fractional transformation on the 
sphere (Bentsen et. al, MWR 1999)

.                       ..                    
.

SchwarzSchwarz--
ChristoffelChristoffel
transformation: transformation: 
can transform a 
simple domain 
into an n-sided 
polygon (Case, 
SIAM News 2008)



horizontal GA, cont.

2. 2. ““ALGEBRAICALGEBRAIC”” MAPPINGSMAPPINGS
not as flexible as fully numerical generation BUT not as flexible as fully numerical generation BUT ……

• Offer considerable speed advantage

• Core set of mappings is coded and ready to use 

• Easy to control grid properties by defining mappings with 
“tunable” parameters.

X X | Sx (t ),Xo(t )( )= Xo + Sx
−1(X − X o) +

(1− Sx
−1)(X − X o)5

(1+10X o
2 + 5X o

4 )

Xo =1− Sx
−1(1− X o) −

(1− Sx
−1)(1− X o)5

(1+10X o
2 + 5X o

4 )

Mapping 2:

from function xmap1: open domain, 1D unimodal



horizontal GA, cont.

X ' X ,Y | Sx (t ), Xo(t )( )= fo(Y )• X X | Sx (t ),Xo(t )( )+ f1(Y )• X 

• extensions to 2D transformations

fo(Y ) =1−Y 4 (3− 2Y 2), f1(Y ) =1− fo(Y )

Mapping 5: from function xmap1: x-open, y-open domain,
2D unimodal

• Parameters can be determined numerically for dynamic 
adaptivity.

• More sophisticated mappings can be built from a relatively 
small set of basic transformations 

• Flatness properties ( ) in region of enhanced
resolution

∂ p X /∂X p = 0



horizontal GA, cont.

•• Map 3: Map 3: ymap1ymap1:  open :  open 1D bimodal1D bimodal

•• (left) Map 2: xmap1, open 1D (left) Map 2: xmap1, open 1D 
unimodalunimodal

•• (above) xmap2, periodic 1D nest(above) xmap2, periodic 1D nest



QuickTime™ and a
Animation decompressor

are needed to see this picture.

Map 5: Map 5: xmap1 & ymap1xmap1 & ymap1: x: x--open, yopen, y--open domain, open domain, 2D 2D unimodalunimodal



•• KD IDENTITIES: KD IDENTITIES: 
“hard wired” into code (metryc)
1. 1. HORIZONTAL HORIZONTAL (m=1,2)

EULAG implementation, cont.

∂x m /∂x j

grid
speeds

  D,t = D ,x E ,t − E ,x D ,t ( )/G xy

  E,t = E , y D ,t − D , y E ,t ( )/G xy

required for
˜ G j

k := g jj ∂x k /∂x j( )  D,y = E ,x /G xy    E,y = -E , y /G xy

  D,x = -D ,x /G xy    E,x = D , y /G xy

  G xy = E ,x D ,y − D ,x E ,y ( )
recall



.

2. 2. VERTICAL VERTICAL (m=3)

KD identities, cont.

∂x m /∂x j

Analytical expressions coded that satisfy identities
exactly, but only for case Gxy = 1

e.g., , , in lieu of      C,x = -C,x /C,z    C,y = -C, y /C,z 

component  j=3 is perfect   C,z = C,z 
−1

grid speed is simularly cons. directly from zs,t , Hs,t

   
C,y =

C,x E , y - C, y E ,x 

C,z Gxy      
C,x =

C, y D ,x - C,x D , y 

C,z Gxy
, ( j =1,2)



•• GCL IDENTITIES: GCL IDENTITIES: 
“under development” - satisfied perfectly 

in some cases, but not generally

EULAG implementation, cont.

G
G 

∂
∂x p

G 
G

∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0

Consider the GCL component j=0:

→
1

G '
∂G '

∂t 
+

∂(G ' E,t )
∂x 

+
∂(G 'D,t )

∂y 
+

∂(G 'C,t )
∂z 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= 0

Often considered “THE” GCL 
(Thomas and Lombard, AIAA 1979)

G ' =: G oG xy

where→
1

G '
∂

∂x p
G ' ∂x p

∂t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0



ADDITIONAL PERSPECTIVES ADDITIONAL PERSPECTIVES ……

GCL identities, cont.

• Possible to consider GCL as “elliptic 
BVP” rather than prognostic

• Generally, cannot ignore components
j = 1,2,3 !

• Diagnostically, consider spatial terms a
divergence → can use subroutine rhsdiv

1
G '

∂G '

∂t 
+

1
G '

∂(G ' E,t )
∂x 

+
∂(G 'D,t )

∂y 
+

∂(G 'C,t )
∂z 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= 0



GCL identities, cont.

.

recall wherez = C(ξ) ξ = Ho(z − zs) /(H − zs)

→ C,z =
dC
dξ

∂ξ
∂z

=
dC
dξ

Ho
H − zs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = G o

−1

Consider the Consider the jj = 3 component:= 3 component:

1
G '

∂
∂x p

G ' ∂x p

∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0 →

1
G '

∂(G 'C,z )
∂z 

=
1

G o

∂(G oC,z )
∂z 

= 0

→ In EULAG, the j = 3 component of the 
GCL is satisfied identically



GCL identities, cont.

VERTICAL TRANSFORMATIONS ONLY:VERTICAL TRANSFORMATIONS ONLY:.
(case ; j = 0,1,2)G xy =1

1
G o

∂
∂x p

G o
∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0 →

∂
∂x p

∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

1
G o

∂G o
∂x j

→
∂
∂z 

∂z 
∂x j

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

∂C,x j

∂z 
= −

1
G o

∂G o
∂x j

C,x j = −
1

G o

∂zs

∂x j + ξ ∂H
∂x j −

∂zs

∂x j
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ Ho

−1⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

→
∂C,x j

∂z 
= −

H,x j − zs,x j

H − zs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

1
G o

∂G o
∂x j

These expressions are 
employed directly in 
code for j = 1,2

Time derivatives,  j = 0, 
handled case by case

(Prusa & Gutowski, 
IJNMF 2006)



vertical, cont.
Test case: flow over 
idealized mountain 
range (Prusa & Gutowski, 
IJNMF 2006)

Sx = 280 km, 
Sy = 80 km, A~5 km

Domain is 3800 x 800 
x 30 km

dx=dy=20 km, 
dz=0.75 km (uniform)

MAX MIN AVE SD
GCLt 0   0 0 0
GCLx 0.1193e-15   -0.1265e-15    0.5919e-19    0.3147e-16
GCLy 0.2590e-15   -0.3002e-15   -0.1155e-19    0.3147e-16



GCL identities, cont.

HORIZONTAL TRANSFORMATIONS HORIZONTAL TRANSFORMATIONS 

.
(case ; j=1,2)G o = 1

1
G xy

∂
∂x p

G xy
∂x p

∂x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0 →

1
G xy

∂(G xy E,x j )
∂x 

+
∂(G xyD,x j )

∂y 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= 0

recall KD recall KD 
identities:identities:   

G xy E,x = D , y , G xyD,x = -D ,x 

G xy E,y = -E , y , G xyD,y = E ,x 

    
→

∂D , y 

∂x 
−

∂D ,x 

∂y 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 , −

∂E , y 

∂x 
+

∂E ,x 

∂y 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0

j=1 j=2 

⇒⇒ COMMUTATIVITY COMMUTATIVITY of partial derivatives!of partial derivatives!



horizontal, cont.

MAX MIN AVE SD
GCLt 0   0 0 0
GCLx 0.6756e-15   -0.6756e-15    0.5237e-34    0.5521e-16
GCLy 0.2891e-15   -0.2764e-15    0.3470e-19    0.5521e-16

Test case: same Test case: same 
flow as previously,flow as previously,
only only AA →→ 0, 0, SSxx=2, =2, 
SSyy=2=21/21/2;;
xx is 1D, is 1D, unimodalunimodal
yy is 2D, is 2D, unimodalunimodal

Max |v|=0.2493e-08
Max |w|=0.6623e-10



Horizontal and vertical test of GCLHorizontal and vertical test of GCL

MAX MIN AVE SD
GCLt 0   0 0 0
GCLx 0.2452e-04   -0.2452e-04   -0.1591e-23            *
GCLy 0.8880e-15   -0.9826e-15   -0.2476e-19    0.6682e-16

Test case: same 
initial flow, but:
topography, A ~ 5 km, 
lx=280 km, ly= 80 km

grid stretching, Sx=2, 
Sy=21/2, x is 1D, unimodal
and y is 2D, unimodal



TIME ADAPTIVE TRANSFORMATIONS TIME ADAPTIVE TRANSFORMATIONS 
Consider a case of 2D flow over topography, with a time Consider a case of 2D flow over topography, with a time 
adaptive, adaptive, unimodalunimodal stretching function for x that concentrates stretching function for x that concentrates 
resolution over the topographyresolution over the topography

GCL identities, cont.
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time GCL, cont. Test case: sameTest case: same
flow and flow and mtnmtn;;
SSxx→→1 at t=0 to1 at t=0 to

2 at t=12 hr2 at t=12 hr
xx is 1D,is 1D, unimodalunimodal

Note mountain Note mountain does not changedoes not change!!

MAX MIN AVE SD
GCLt,0 0.4391e-03   -0.1099e-16    0.5738e-04    0.1217e-03
GCLt,I 0.1008e-04   -0.1008e-04    0.3144e-08    0.8305e-05
GCLx 0.1215e-15   -0.1106e-15   -0.3588e-18            *

GCLGCLt,0t,0 is uncorrected; is uncorrected; GCLGCLt,It,I is with elliptic iterations, but is with elliptic iterations, but f(Gf(Goo))=0=0

Ave flow changesAve flow changes
uuextext = 1.3%= 1.3%
wwextext = 2.6%= 2.6%

QuickTime™ and a
Animation decompressor

are needed to see this picture.




REMARKS on GAREMARKS on GA
• Analytical mappings, when useful, have significant 
advantages

GCL identities, concluded

• Adaptation in time coordinate?

• GCL identities needed for divergence operator. 
Connected to commutativity. 
Is solving a BVP better than integration of first order 
equations (i.e., a prognostic eq. for j=0)?

• KD identities can be easily solved, guarantee that 
tensors not including divergence transform propertly





horizontal GA, cont.

Nonmonotonicity = DISASTER!DISASTER!
(inverse mapping no longer unique)



GA in Computational Models, cont.GA in Computational Models, cont.

• Consider an example from heat transfer
An isothermal block is sud-
denly heated at its surface:
1. From a global perspective, 
coordinate x, the surface heat
transfer rate is initially unbounded

→ define space so that “motion” looks simple

q = −k dT /dx
2. From a local perspective, with rescaled X ~ x / t1/2, the surface 
temperature gradient is well behaved for all time. 

(dT /dX)X=0 ~ −1/ π

QuickTime™ and a
Animation decompressor

are needed to see this picture.



Separability of metric structure into given 
vertical and horizontal dependencies limits 
generality but offers:
• Built in analytical structure for vertical mapping 

helps maintain accuracy of vertical metric 
identities to machine precision

• All metric coefficients (except for ΓΓ) can be 
computed from the product of one and two-
dimensional arrays

• Separability can be used to help satisfy horizontal 
metric identities more easily

EULAG metrics, cont.
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