

Turbulence is ubiquitous...

 (Van Dyke, Parabolic P.1982)Re=2300; water jet in water
$L / \lambda_{k} \sim R e^{3 / 4} \sim 330$
λ_{k} is Kolmogorov microscale
(Tennekes and Lumley, MIT P. 1972)

ubiquitous,cont.

$$
\begin{gathered}
\mathrm{Re} \sim 3 \text { billion } \\
L / \lambda_{k} \sim \operatorname{Re}^{3 / 4} \sim 10^{7} \\
T / \tau_{k} \sim \operatorname{Re}^{1 / 2} \sim 50,000
\end{gathered}
$$

(nttp://vulcan:wrr.usgs. govimgs/Jpg/MisH/images)

Extended "Moore's Law" for MHD simulations

(Crowley, SIAM News 2004)

GA in Computational Models, cont.

In fusion simulations, it is anticipated that GA will contribute to model speedup more than hardware improvements (Sipics 2006 SIAM News)

GA in Computational Models, cont.

- Consider an example from general relativity

A test particle free falls into a black hole:

1. From the particle's point of view, proper time τ, it's passage through the horizon is swift.

$$
V=\sqrt{2 M / r}
$$

2. From the distant universe at rest, coordinate time t, the particle appears to approach the horizon asymtotically, and NEVER reaches it in finite time.

$$
V=(1-2 M / r) \sqrt{2 M / r} \approx \Delta r /(2 M)
$$

"Time is defined so that motion looks simple" (Misner et.al, Freeman P. 1973).

$$
d \tau=(1-2 M / r)^{1 / 2} d t
$$

GA in Computational Models, concluded

BEST COORDINATES:

- make dynamics look "simple"by redefining space
- think inner and outer scales in spirit of perturbation theory (Holmes, Springer-Verlag P. 1995)
- GA attempts to approximate best coordinates
(i) reduces computational resources needed for a given resolution \longleftrightarrow resolves smaller scales for a given computational resource
(ii) solution better reveals relevant physics

Consider GA an essential feature

GA in EULAG

Introduce coordinate transformation

(Prusa \& Smolarkiewicz, JCP 2003)

$$
(\bar{t}, \bar{x}, \bar{y}, \bar{z})=(t, E(t, x, y), D(t, x, y), C(t, x, y, z))
$$

where $\quad(t, x, y, z) \in \mathbf{D}_{p} \subseteq \mathbf{S}_{p} \quad$: physical space
and $\quad(\bar{t}, \bar{x}, \bar{y}, \bar{z}) \in \mathbf{D}_{t} \subseteq \mathbf{S}_{t} \quad$: transformed space
$\mathbf{D}_{p}, \mathbf{D}_{t}$ are physical and transformed computational domains

- Physical problem is posed in physical space, \mathbf{S}_{p}. The coordinates (t, \mathbf{x}) describing S_{p} are stationary and orthogonal
- Physical problem is solved in transformed space, \mathbf{S}_{t} The coordinates ($\bar{t}, \overline{\mathbf{x}}$) describing \mathbf{S}_{t} are nonstationary and nonorthogonal as viewed from \mathbf{S}_{p}

EULAG over., cont.

$$
\begin{gathered}
\frac{\partial\left(\rho^{*} \bar{v}^{k}\right)}{\partial \bar{x}^{k}}=0 \\
\frac{d v^{j}}{d \bar{t}}=-\widetilde{G}_{j}^{k} \frac{\partial \pi^{\prime}}{\partial \bar{x}^{k}}+g \frac{\theta^{\prime}}{\theta_{b}} \delta_{3}^{j}+\mathcal{F}^{j}+\mathcal{V}^{j} \\
\frac{d \theta^{\prime}}{d \bar{t}}=-\bar{v}^{k} \frac{\partial \theta_{e}}{\partial \bar{x}^{k}}+\mathcal{H}
\end{gathered}
$$

- 3 velocities: v^{j} ("physical" as described in \mathbf{S}_{p}) $\bar{v}^{s^{k}}$ ("solenoidal" as described in \mathbf{S}_{t})
$\bar{V}^{*^{k}}$ ("contravariant" = advection as described in \mathbf{S}_{t})
- Metric coefficients: $\tilde{G}_{j}^{k}:=\sqrt{g^{j j}}\left(\partial \tilde{x}^{k} / \partial x^{j}\right)$

EULAG velocities, cont.

- Velocities for sj spherical coordinaties
physical: $V=u e_{\lambda}+v e_{\phi}+w e_{r}$

$$
=u_{c} \mathbf{i}+v_{c} \hat{\mathbf{j}}+w_{c} \mathbf{k}
$$

$$
u=-u_{c} \sin \lambda+v_{c} \cos \lambda \quad \text { (zonal) }
$$

$v=-u_{c} \sin \phi \cos \lambda-v_{c} \sin \phi \sin \lambda+w_{c} \cos \phi \quad$ (meridional)
$w=u_{c} \cos \phi \cos \lambda+v_{C} \cos \phi \sin \lambda+w_{c} \sin \phi \quad$ (radial)
contravariant: $u^{*}=u /(\Gamma \cos \phi), \quad v^{*}=v / \Gamma, \quad w^{*}=w$

$$
\left(\text { where } \Gamma=1+z / R_{o}, \lambda R_{o}=x, \phi R_{o}=y, z=r-R_{o}\right)
$$

EULAG velocities, cont.

Contravariant $\bar{v}^{*^{k}}$ is analytically most fundamental form

$$
\begin{aligned}
\bar{v}^{* i}:=\frac{d \bar{x}^{i}}{d \bar{t}} & =v^{*^{i}} \frac{\partial \bar{x}^{i}}{\partial x^{j}} \\
& =\frac{\partial^{i}}{\partial}+\left(u^{*} \frac{\partial^{i}}{\partial x}+v^{*} \frac{\partial_{x}^{i}}{\partial y}+w^{*} \frac{\partial \bar{x}^{i}}{\partial z}\right)=\frac{\partial \bar{x}^{i}}{\partial r}+\bar{v}^{i}
\end{aligned}
$$

Solenoidal $\bar{v}^{s^{k}}$ is convenient for anelastic continuity Physical $v^{k}=\sqrt{g_{k k}} *^{*}$ is most easily measured

EULAG metrics, cont.

- Metric tensors for S_{p} : $\quad g_{k k}=\delta_{k k}$
(Cartesian)
$g_{j k}=0$ for $j \neq k$

$$
g_{k k}=\delta_{k 1}+\delta_{k 2} \Gamma^{2}+\delta_{k 3} \quad\left(\begin{array}{c}
\text { polar cylindrical } \\
\left.\Gamma=r / R_{o}\right)
\end{array}\right.
$$

$$
g_{k k}=\delta_{k 1}(\Gamma \cos \phi)^{2}+\delta_{k 2} \Gamma^{2}+\delta_{k 3} \quad(\text { spherical })
$$

Conjucatie rrietric tersjors for $\mathbf{S}_{p}: g^{k k}=g_{k k}^{-1}$

Conjugate metric tensor for \mathbf{S}_{t} :

$$
\bar{g}^{m n}=g^{k k}\left(\frac{\partial \bar{x}^{m}}{\partial x^{k}} \frac{\partial \bar{x}^{n}}{\partial x^{k}}\right) \rightarrow \bar{g}^{12}=\left(D_{, y} E_{, y}+D_{, x} E_{, x} / \cos ^{2} \phi\right)^{-2}
$$

EULAG metrics, cont.

- Jacobians for $S_{p}, G=\left|g_{j k}\right|^{1 / 2}$: $G=1$ (Cartesian), Γ (polar cylindrical), and $\Gamma^{2} \cos \phi$ (spherical coordinates)

Jacoobian for st is separable:

$$
\bar{G}=G \bar{G}^{\prime}=G\left(\bar{G}_{o} \bar{G}_{x y}\right)
$$

- Vertical mapping contribution

$$
\bar{G}_{o}=\left(\frac{H(t, x, y)-z_{s}(t, x, y)}{H_{o}}\right)\left(\frac{d C}{d \xi}\right)^{-1} \begin{aligned}
& \text { ESTENDED (jAL-CHEN } \begin{array}{l}
\text { Wedi \& Smolarkiwicz, } \\
\text { JCP 2004) }
\end{array}
\end{aligned}
$$

EULAG metrics, cont.

where

$$
\bar{z}=C(\xi) ; \quad \xi=H_{o}\left(\frac{z-z_{s}}{H-z_{s}}\right)
$$ is a similarity variable that collapses the dependency of $C(t, x, y, z)$ onto that of a single independent variable

- Horizontal mapping:

$$
\bar{G}_{x y}=\left(\mathrm{E}_{, \bar{x}} \mathrm{D}_{, \bar{y}}-\mathrm{D}_{, \bar{x}} \mathrm{E}_{, \bar{y}}\right)=\left(E_{, x} D_{, y}-D_{, x} E_{, y}\right)^{-1}
$$

where (E, D) are the mappings

$$
(x, y)=((\mathrm{E}(\bar{t}, \bar{x}, \bar{y}), \mathrm{D}(\bar{t}, \bar{x}, \bar{y}))
$$

Metric identities

1. Kronecker Delta (KD) identities:

(Prusa and Gutowski, IJNMF 2006)

$$
\frac{\partial \bar{x}^{m}}{\partial \bar{x}^{k}}=\bar{\delta}_{k}^{m}, \quad \bar{x}^{m}=\bar{x}^{m}\left(x^{j}\right) \rightarrow \frac{\partial \bar{x}^{m}}{\partial x^{j}} \frac{\partial x^{j}}{\partial \bar{x}^{k}}=\bar{\delta}_{k}^{m}
$$

Why are these important? Consider computation of the contravariant velocity:

$$
\bar{v}^{* m}=v^{* k} \frac{\partial \bar{x}^{m}}{\partial x^{k}} \rightarrow \bar{v}^{* m} \frac{\partial x^{j}}{\partial \bar{x}^{m}}=v^{* k}\left(\frac{\partial \bar{x}^{m}}{\partial x^{k}} \frac{\partial x^{j}}{\partial \bar{x}^{m}}\right) \equiv v^{* k} \delta_{k}^{j}
$$

$$
\rightarrow \quad \bar{v}^{* m} \frac{\partial x^{k}}{\partial \bar{x}^{m}}=v^{* k} \quad \begin{aligned}
& \text { Use of the KD identities is ubiquitous } \\
& \text { in tensor manipulations }
\end{aligned}
$$

identities, cont.

How are KD inclentities implemented?
Consider the case $m=1, k=0$:
$\frac{\partial \bar{x}^{1}}{\partial x^{j}} \frac{\partial x^{j}}{\partial \hat{x}^{0}}=\bar{\delta}_{0}^{1} \rightarrow \frac{\partial \bar{x}}{\partial x^{j}} \frac{\partial^{j}}{\partial t}=0$ $1, \frac{z e r o}{x}=E(t, x, y)$

$$
\rightarrow \quad E_{, t}+E_{, x} E_{, \bar{t}}+E_{, y} D_{, \bar{t}}+E_{, z} C_{\bar{t}}=0
$$

case $m=1, k=1: \quad E_{, x} \mathrm{E}_{, \overline{\mathrm{x}}}+E_{, y} \mathrm{D}_{, \bar{x}}=1$
In general, there are 16 independent KD equations; but given the allowed form of the mapping, only 10 are nontrivial

$$
\begin{aligned}
& \text { Solve for } \partial \bar{x}^{m} / \partial x^{j}: \quad E_{, x}=\mathrm{D}_{, \bar{y}} / G_{x y} \\
& E_{, t}=\left(\mathrm{E}_{, \bar{y}} \mathrm{D}_{, \bar{t}}-\mathrm{D}_{, \bar{y}} \mathrm{E}_{, \bar{t}}\right) / G_{x y}
\end{aligned}
$$

EULAG metrics, cont.

2. Geometric Conservation Law (GCL) identities: (Prusa and Gutowski, IJNMF 2006)

Motivation? Consider the computation of the divergence of a contravariant vector F^{j} (e.g., some physical flux $\left.F^{j}=\alpha g^{j k}\left(\not \partial / 2 x^{k}\right)\right)$

$$
\nabla \bullet \mathbf{F} \equiv \frac{1}{G} \frac{\partial}{\partial x^{j}}\left(G F^{j}\right)
$$

Tensor form in physical coordinates

$$
\rightarrow \bar{\nabla} \bullet \overline{\mathbf{F}} \equiv \frac{1}{\bar{G}} \frac{\partial}{\partial_{x^{j}}}\left(\bar{G} \bar{F}^{j}\right)
$$

Tensor form in transformed coordinates

Is ensyishing rolore reculured for terisor character to be preserved?

EULAG metrics, cont.

$$
\nabla \bullet \mathbf{F} \equiv \frac{1}{G} \frac{\partial}{\partial x^{j}}\left(G F^{j}\right)=\frac{1}{\bar{G}}\left(\frac{\bar{G}}{G} \frac{\partial \bar{x}^{p}}{\partial x^{j}}\right) \frac{\partial}{\partial \widehat{x}^{p}}\left(G F^{j}\right)
$$

move parenthetical expression inside derivative

$$
=\frac{1}{\bar{G}} \frac{\partial}{\partial \widetilde{x}^{p}}\left(\bar{G} \bar{F}^{p}\right)-F^{j}\left\{\frac{G}{\bar{G}} \frac{\partial}{\partial \widetilde{x}^{p}}\left(\frac{\bar{G}}{G} \frac{\widetilde{x}^{p}}{\partial x^{j}}\right)\right\} \quad \begin{gathered}
\text { where } \\
\bar{F}^{p}=\alpha \bar{g}^{p k}\left(\not \partial / \partial \bar{x}^{k}\right)
\end{gathered}
$$

$\rightarrow \nabla \bullet \mathbf{F}=\bar{\nabla} \bullet \overline{\mathbf{F}}-F^{j}\left\{\frac{G}{\bar{G}} \frac{\partial}{\widehat{x}^{p}}\left(\frac{\bar{G}}{G} \frac{\partial \bar{x}^{p}}{\partial x^{j}}\right)\right\}$

$$
\begin{aligned}
& \text { cornponents } j=0,1,2,3 \\
& G C L: 1
\end{aligned}
$$

Since in general, the F^{j} are arbitrary, invariance of divergence \rightarrow

$$
\frac{G}{\bar{G}} \frac{\partial}{\partial \bar{x}^{p}}\left(\frac{\bar{G}}{G} \frac{\partial \bar{x}^{p}}{\partial x^{j}}\right) \equiv 0
$$

GCL is required for conservation laws

IMPLEMENTATION of GA in EULAG

- Vertical mapping is analytically specified, extended terrain-following coordinates. Vertical boundaries may be computed, however (Wedi \& Smolarkiewicz, JCP 2004; Ortiz \& Smolarkiewicz, IJNMF 2006)
- Horizontal mappings from \mathbf{S}_{t} to \mathbf{S}_{p} may be specified analytically, computed numerically, or be a mix (hybrid).
- This separability of the horizontal vs. vertical mappings translates into the metric identities as well as the Jacobian

EULAG implementation, cont.

- HORIZONTAL GA:

Numerical transformations

1. BODY FITTED COORDINATES of Thompson et.al (JCP 1974), generated transformed coordinates (\bar{x}, \bar{y}) via the numerical solution of coupled Poisson equations with Dirichlet boundary conditions, one for each coordinate:

$$
\nabla^{2} x=P(x, y), \quad \nabla^{2} y=Q(x, y)
$$

where P and Q are source functions used to control the grid interior

horizontal GA, cont.

"elliptic" generator example

 (albeit solved via boundary element method; Tsay \& Hsu, IJNME 1997)
horizontal GA, cont.

BASIC CONFLICT arises in GA:

- FLOW FEATURES can require very high resolution in isolated, distinct regions

$$
\Delta x_{\max } / \Delta x_{\min } \rightarrow \text { larger }
$$

- GRID QUALITY encompasses smoothness, orthogonality, monotonicity ... (impact TE, Thompson \& Mastin, ASME 1983; stability)

$$
\Delta x_{\max } / \Delta x_{\min } \rightarrow \text { unity }
$$

- COURANT NUMBER limitations will be set by smallest grid interval \rightarrow adaption in time

horizontal GA, cont.

2. VARIATIONAL METHODS
 used to develop elliptic grid generators (Brackbill and Saltzman JCP 1982)

Extremize: $\quad I=\int f\left(\bar{x}, \bar{y}, x, x_{\bar{x}}, x_{\bar{y}}, \ldots\right) d \bar{x} d \bar{y} \rightarrow$

$$
\begin{gathered}
\text { Euler-Lagrange Eq: } \\
\text { (Weinstock, } \\
\frac{\partial f}{\partial x}
\end{gathered}-\frac{\partial}{\partial \bar{x}}\left(\frac{\partial f}{\partial x_{\bar{x}}}\right)-\frac{\partial}{\partial \bar{y}}\left(\frac{\partial f}{\partial x_{\bar{y}}}\right)+\ldots=0
$$ Dover P. 1974)

$$
f=w(\bar{x}) \bullet\left(x_{\bar{x}}\right)^{2} / 2 \rightarrow \frac{\partial}{\partial \bar{x}}\left(w \frac{\partial x}{\partial \bar{x}}\right)=0
$$

weighte function \uparrow

$$
\rightarrow x(\bar{x})=x_{L}+c \int_{\bar{x}_{L}}^{\bar{x}} w(\chi)^{-1} d \chi
$$

Passive tracer advection at 2 and 5 days: (e) leapfrog MM5, (c,d,f) MPDATA with GA (Iselin et. al, MWR 2002,2005)

horizontal GA, cont.

3. NFT GRID GENERATION advection of grid point density via MPDATA (Prusa \& Smolarkiewicz, JCP 2003)

If $\partial U / \partial \bar{x}=0$ then the NFT solution for mesh density,

$$
\frac{\partial \delta_{x}}{\partial x}+\frac{\left.\partial U \delta_{x}\right)}{\partial x}=0
$$

where $\delta_{x} \sim \partial x / \partial x$ will be conservative and monotone

horizontal GA, cont.

Analytical transformations

1. CONFORMAL MAPPING

> SchwarzChristoffel transformation: can transform a simple domain into an n-sided polygon (Case, SIAM News 2008)
Linear fractional transformation on the sphere (Bentsen et. al, MWR 1999)

horizontal GA, cont.

2. "ALGEBRAIC" MAPPINGS

 not as flexible as fully numerical generation BUT ...- Core set of mappings is coded and ready to use
- Offer considerable speed advantage
- Easy to control grid properties by defining mappings with "tunable" parameters.

$$
X\left(\bar{X} \mid S_{X}(\bar{t}), X_{o}(\bar{t})\right)=X_{o}+S_{X}^{-1}\left(\bar{X}-\bar{X}_{o}\right)+\frac{\left(1-S_{X}^{-1}\right)\left(\bar{X}-\bar{X}_{o}\right)^{5}}{\left(1+10 \bar{X}_{o}^{2}+5 \bar{X}_{o}^{4}\right)}
$$

$$
X_{o}=1-S_{X}^{-1}\left(1-\bar{X}_{o}\right)-\frac{\left(1-S_{X}^{-1}\right)\left(1-\bar{X}_{o}\right)^{5}}{\left(1+10 \bar{X}_{o}^{2}+5 \bar{X}_{o}^{4}\right)}
$$

from function xmap1: open domain, 1D unimodal

horizontal GA, cont.

- extensions to 2D transformations

$$
X^{\prime}\left(\bar{X}, \bar{Y} \mid S_{x}(\bar{t}), X_{o}(\bar{t})\right)=f_{o}(\bar{Y}) \bullet X\left(\bar{X} \mid S_{x}(\bar{t}), X_{o}(\bar{t})\right)+f_{1}(\bar{Y}) \bullet \bar{X}
$$

$$
f_{o}(\bar{Y})=1-\bar{Y}^{4}\left(3-2 \bar{Y}^{2}\right), \quad f_{1}(\bar{Y})=1-f_{o}(\bar{Y})
$$

- Flatness properties $\left(\partial^{p} X / \partial \bar{X}^{p}=0\right)$ in region of enhanced resolution
- Parameters can be determined numerically for dynamic adaptivity.
- More sophisticated mappings can be built from a relatively small set of basic transformations

horizontal GA, cont.

, Matp 3: yssatpl: open 1D'birsodal

usinsiodal

- (above) xna!p2, periodic 1D nest

QuickTime ${ }^{\text {TM }}$ and a

Animation decompressor

 are needed to see this picture.Ma.p 5: xnapip1 \& ynnap1: x-0pen, y-open domain, 2D unimodal

EULAG implementation, cont.

- KD IDENTITJIES:

"hard wired" into code (metryc)

1. HORIZONTAL $\overline{x x}^{m} / \partial_{x}^{j}{ }_{(m=1,2)}$

$$
\begin{array}{|l|l|}
\hline E_{, x}=\mathrm{D}_{, \bar{y}} / \bar{G}_{x y} & D_{, x}=-\mathrm{D}_{, \bar{x}} / \bar{G}_{x y} \\
& \text { required for } \\
E_{, y}=-\mathrm{E}_{, \bar{y}} / \bar{G}_{x y} & D_{, y}=\mathrm{E}_{, \bar{x}} / \bar{G}_{x y} \\
\tilde{G}_{j}^{k}:=\sqrt{g^{j j}(}\left(2 \bar{x}^{k} / \partial x^{j}\right)
\end{array}
$$

$$
\begin{aligned}
& \text { grid } \\
& \text { speeds } \begin{array}{l}
E_{, t}=\left(\mathrm{E}_{, \bar{y}} \mathrm{D}_{, \bar{t}}-\mathrm{D}_{, \bar{y}} \mathrm{E}_{, \bar{t}}\right) / \bar{G}_{x y} \\
D_{, t}=\left(\mathrm{D}_{, \overline{\mathrm{x}}, \bar{t}}-\mathrm{E}_{, \bar{x}} \mathrm{D}_{, \bar{t}}\right) / \bar{G}_{x y}
\end{array}
\end{aligned}
$$

recall

$$
\bar{G}_{x y}=\left(\mathrm{E}_{, \bar{x}} \mathrm{D}_{, \bar{y}}-\mathrm{D}_{, \bar{x}} \mathrm{E}_{, \bar{y}}\right)
$$

KD identities, cont.

2. VERTICAL $\partial \bar{x}^{m} / \partial x^{j}(m=3)$

Analytical expressions coded that satisfy identities exactly, but only for case $G_{x y}=1$

$$
\begin{aligned}
& \text { e.g., } C_{, x}=-\mathrm{C}_{, \bar{x}} / \mathrm{C}_{, \bar{z}}, C_{, y}=-\mathrm{C}_{\bar{y}} / \mathrm{C}_{\overline{\bar{z}}}, \text { in lieu of } \\
& C_{, x}=\frac{\mathrm{C}_{\bar{y}} \mathrm{D}_{\overline{\bar{x}}}-\mathrm{C}_{\bar{x}} \mathrm{D}_{, \bar{y}}}{\mathrm{C}_{, \bar{z}} G_{x y}}, C_{, y}=\frac{\mathrm{C}_{\bar{x}} \mathrm{E}_{, \bar{y}}-\mathrm{C}_{\overline{\bar{y}}} \mathrm{E}_{, \bar{x}}}{\mathrm{C}_{\bar{z}} \bar{G}_{x y}}(j=1,2)
\end{aligned}
$$

grid speed is simularly cons. directly from $z_{s, t}, H_{s, t}$ component $j=3 \quad C_{, z}=\mathrm{C}_{, \bar{z}}{ }^{-1}$ is perfect

EULAG implementation, cont.

- GCL IDENTJJJES:
"under development" - satisfied perfectly in some cases, but not generally

$$
\frac{G}{\bar{G}} \frac{\partial}{\partial \hat{x}^{p}}\left(\frac{\bar{G}}{G} \frac{\partial^{p}}{\partial \partial^{j}}\right) \equiv 0 \rightarrow \frac{1}{\bar{G}^{\prime}} \frac{\partial}{\overline{\partial x}^{p}}\left(\bar{G}^{\prime} \frac{\partial_{x}^{p}}{\partial}\right) \equiv 0 \quad \bar{G}^{\prime}=:=: \bar{G}_{0} \overline{\bar{G}}
$$

Consider the GCL component $j=0$:

$$
\rightarrow \frac{1}{\bar{G}^{\prime}}\left\{\left\{\frac{\partial \bar{G}^{\prime}}{\tilde{\partial}}+\frac{\left.\partial \bar{G}^{\prime} E_{t, t}\right)}{\partial \bar{x}}+\frac{\partial\left(\bar{G}^{\prime} D_{t}\right)}{\partial \bar{y}}+\frac{\partial\left(\bar{G}^{\prime} C_{t, t}\right)}{\partial \bar{z}}\right\}=0\right.
$$

Often considered "THE" GCL
(Thomas and Lombard, AIAA 1979)

GCL identities, cont.

ADDITIONAL PERSPECTIVES ...

- Generally, cannot ignore components $j=1,2,3$!
- Diagnostically, consider spatial terms a divergence \rightarrow can use subroutine rhsdiv

$$
\frac{1}{\bar{G}^{\prime}} \frac{\partial \bar{G}^{\prime}}{\bar{x}}+\frac{1}{\bar{G}^{\prime}}\left\{\frac{\partial\left(\bar{G}^{\prime} E_{, t}\right)}{\partial \bar{x}}+\frac{\partial\left(\bar{G}^{\prime} D_{t,}\right)}{\partial \bar{y}}+\frac{\partial\left(\bar{G}^{\prime} C_{, t}\right)}{\partial \bar{z}}\right\}=0
$$

- Possible to consider GCL as "elliptic BVP" rather than prognostic

GCL identities, cont.

Consider the $j=3$ component:

$$
\frac{1}{\bar{G}^{\prime}} \frac{\partial}{\widehat{x}^{p}}\left(\bar{G}^{\prime} \frac{\partial^{p}}{\partial z}\right)=0
$$

$$
\rightarrow \frac{1}{\bar{G}^{\prime}} \frac{\left.\partial \bar{G}^{\prime} C_{, z}\right)}{\tilde{d}_{\bar{z}}}=\frac{1}{\bar{G}_{o}} \frac{\partial\left(\bar{G}_{o} C_{, z}\right)}{\tilde{Z},}=0
$$

recall $\bar{z}=C(\xi)$ where $\xi=H_{o}\left(z-z_{s}\right) /\left(H-z_{s}\right)$

$$
\rightarrow \quad C_{, z}=\frac{d C}{d \xi} \frac{\partial \xi}{\partial z}=\frac{d C}{d \xi}\left(\frac{H_{o}}{H-z_{s}}\right)=\bar{G}_{o}^{-1}
$$

$\rightarrow \operatorname{In}$ EULAG, the $j=3$ component of the GCL is satisfied identically

GCL identities, cont.

VERTICAL TRANSFORMATIONS ONLY:

 (case $\bar{G}_{x y}=1 ; j=0,1,2$)$$
\frac{1}{\bar{G}_{o}} \frac{\partial}{\partial \widehat{x}^{p}}\left(\bar{G}_{o} \frac{\partial \widehat{x}^{p}}{\partial x^{j}}\right) \equiv 0 \rightarrow \frac{\partial}{\partial \widehat{x}^{p}}\left(\frac{\partial \bar{x}^{p}}{\partial x^{j}}\right)=-\frac{1}{\bar{G}_{o}} \frac{\partial \bar{G}_{o}}{\partial x^{j}}
$$

$$
\rightarrow \frac{\partial}{\partial \hat{z}}\left(\frac{\partial \widehat{Z}}{\partial x^{j}}\right)=\frac{\partial C_{, x^{j}}}{\partial \bar{Z}}=-\frac{1}{\bar{G}_{o}} \frac{\partial \bar{G}_{o}}{\partial x^{j}}
$$

(Prusa \& Gutowski, IJNMF 2006)

$$
C_{, x^{j}}=-\frac{1}{\bar{G}_{o}}\left\{\frac{\partial z_{s}}{\partial x^{j}}+\xi\left(\frac{\partial H}{\partial x^{j}}-\frac{\partial z_{s}}{\partial x^{j}}\right) H_{o}^{-1}\right\}
$$

These expressions are employed directly in

$$
\rightarrow \frac{\partial C_{, x^{j}}}{\partial_{\bar{Z}}}=-\left(\frac{H_{, x^{j}}-z_{s, x^{j}}}{H-z_{S}}\right)=-\frac{1}{\bar{G}_{o}} \frac{\partial \bar{G}_{o}}{\partial x^{j}}
$$ code for $j=1,2$

Time derivatives, $j=0$, handled case by case

vertical, cont.

Test case: flow over idealized mountain
 range (Prusa \& Gutowski, IJNMF 2006)

$\mathrm{S}_{\mathrm{x}}=280 \mathrm{~km}$, $\mathrm{S}_{\mathrm{y}}=80 \mathrm{~km}, \mathrm{~A} \sim 5 \mathrm{~km}$
Domain is 3800×800 x 30 km
$\mathrm{dx}=\mathrm{dy}=20 \mathrm{~km}$, $\mathrm{dz}=0.75 \mathrm{~km}$ (uniform)

AVE
0

MIN

| GCL_{t} | 0 | 0 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| GCL_{x} | $0.1193 \mathrm{e}-15$ | $-0.1265 \mathrm{e}-15$ | $0.5919 \mathrm{e}-19$ | $0.3147 \mathrm{e}-16$ |
| GCL_{y} | $0.2590 \mathrm{e}-15$ | $-0.3002 \mathrm{e}-15$ | $-0.1155 \mathrm{e}-19$ | $0.3147 \mathrm{e}-16$ |

GCL identities, cont. (case $\bar{G}_{o}=1 ; j=1,2$) HORIZONTAL TRANSFORMATIONS

$$
\frac{1}{\bar{G}_{x y}} \frac{\partial}{\partial \widehat{x}^{p}}\left(\bar{G}_{x y} \frac{\partial^{p}}{\frac{p}{x^{j}}}\right) \equiv 0 \rightarrow \frac{1}{\bar{G}_{x y}}\left\{\frac{\left.\partial \bar{G}_{x y} E_{, x^{j}}\right)}{\partial \bar{x}}+\frac{\left.\partial \bar{G}_{x y} D_{, x^{j}}\right)}{\partial \tilde{y}^{\prime}}\right\}=0
$$

recall KD
identities:

$$
\begin{array}{ll}
\bar{G}_{x y} E_{, x}=\mathrm{D}_{, \bar{y}}, & \bar{G}_{x y} D_{, x}=-\mathrm{D}_{, \bar{x}} \\
\bar{G}_{x y} \mathrm{E}_{, y}=-\mathrm{E}_{, \bar{y}}, & \bar{G}_{x y} D_{, y}=\mathrm{E}_{, \bar{x}}
\end{array}
$$

$$
\rightarrow\left(\frac{\partial \mathrm{D}_{, \bar{y}}}{\partial \bar{x}}-\frac{\partial \mathrm{D}_{, \bar{x}}}{\partial \bar{y}}\right)=0, \quad\left(-\frac{\partial \Xi_{, \bar{y}}}{\partial \bar{x}}+\frac{\Xi_{, \bar{x}}}{\partial \bar{y}}\right)=0
$$

$$
j=1
$$

$$
j=2
$$

\Rightarrow COMIMUTJATJVITJY of partial derivatives!

Test celse: sanse
filowy as previousiy,
onily $A \rightarrow 0, S_{x}=2$,
$S_{y}=2^{1 / 2}$;
x is 1D, urnirsoclal
y is 2D, urnirsioclal.
Max $|v|=0.2493 e-08$
$\operatorname{Max}|w|=0.6623 e-10$

	MAX	MIN	AVE	SD	
GCL $_{t}$	0	0	0	0	
GCL $_{4}$	$0.6756 \mathrm{e}-15$	$-0.6756 \mathrm{e}-15$	$0.5237 \mathrm{e}-34$	$0.5521 \mathrm{e}-16$	
GCL $_{y}$	$0.2891 \mathrm{e}-15$	$-0.2764 \mathrm{e}-15$	$0.3470 \mathrm{e}-19$	$0.5521 \mathrm{e}-16$	

Horizontal and vertical test of GCL

	MAX		MIN	AVE	SD
GCL_{t}	0	0	0	0	
GCL_{x}	$0.2452 \mathrm{e}-04$	$-0.2452 \mathrm{e}-04$	$-0.1591 \mathrm{e}-23$	$*$	
GCL_{y}	$0.8880 \mathrm{e}-15$	$-0.9826 \mathrm{e}-15$	$-0.2476 \mathrm{e}-19$	$0.6682 \mathrm{e}-16$	

GCL identities, cont.

TIME ADAPTIVE TRANSFORMATIONS

Consider a case of 2D flow over topography, with a time adaptive, unimodal stretching function for x that concentrates resolution over the topography

$$
\frac{1}{\bar{G}^{\prime}} \frac{\partial}{\partial \widehat{x}^{p}}\left(\bar{G}^{\prime} \frac{\partial \bar{x}^{p}}{\partial x^{j}}\right) \equiv 0
$$

Only $j=0$ component is nontrivial; note $D_{, t}, C_{, t}=0$

$$
\rightarrow\left\{\frac{1}{\bar{G}_{o}} \frac{\partial \bar{G}_{o}}{\partial t}+\frac{1}{\bar{G}_{x y}} \frac{\partial \bar{G}_{x y}}{\partial t}\right\}+\frac{1}{\bar{G}^{\prime}} \frac{\partial \bar{G}^{\prime} E_{, t}}{\partial \bar{x}}=0
$$

$$
\rightarrow \frac{\partial \mathrm{E}_{, \bar{x}}}{\bar{x}}=-\frac{\mathrm{E}_{, \bar{x}}}{\bar{G}^{\prime}} \frac{\partial\left(\bar{G}^{\prime} E_{, t}\right)}{\partial \bar{x}}-\frac{1}{\bar{G}_{o}} \frac{\partial \bar{\sigma}_{o}}{\partial} \text { since } \bar{G}_{x y}=\mathrm{E}_{, \bar{x}}
$$

$$
\rightarrow \frac{\partial^{2} \mathrm{E}_{, \bar{t}}}{\partial \bar{x}^{2}}=-\frac{\partial}{\partial \bar{x}}\left\{\frac{\mathrm{E}_{, \bar{x}}}{\bar{G}^{\prime}} \frac{\partial\left(\bar{G}^{\prime} E_{, t}\right)}{\partial \tilde{x}}\right\}+f\left(\bar{G}_{o}\right)
$$

time GCL, cont.

QuickTime ${ }^{\text {TM }}$ and a
Animation decompressor are needed to see this picture.

Note mountaín cloes not change!

Test case: same flow and min;

$$
\begin{aligned}
& S_{x} \rightarrow 1 \text { ait } t=0 \text { to } \\
& 2 \text { at } t=12 \text { his } \\
& x \text { is } 1 D, \text { unimodal }
\end{aligned}
$$

Ave flow changes

$$
\begin{aligned}
& u_{e x t}=1.3 \% \\
& w_{\text {ext }}=2.6 \%
\end{aligned}
$$

$G C L_{t, 0}$ is uncorrected; $G C L_{t, 1}$ is with elliptic iterations, but $f\left(G_{0}\right)=0$
MAX MIN AVE SD

$\mathrm{GCL}_{t, 0}$	$0.4391 \mathrm{e}-03$	$-0.1099 \mathrm{e}-16$	$0.5738 \mathrm{e}-04$	$0.1217 \mathrm{e}-03$
$\mathrm{GCL}_{\mathrm{t}, 1}$	$0.1008 \mathrm{e}-04$	$-0.1008 \mathrm{e}-04$	$0.3144 \mathrm{e}-08$	$0.8305 \mathrm{e}-05$
$\mathrm{GCL}_{\mathrm{x}}$	$0.1215 \mathrm{e}-15$	$-0.1106 \mathrm{e}-15$	$-0.3588 \mathrm{e}-18$	$*$

GCL identities, concluded

REMARKS on GA

- Analytical mappings, when useful, have significant advantages
- KD identities can be easily solved, guarantee that tensors not including divergence transform propertly
- GCL identities needed for divergence operator. Connected to commutativity. Is solving a BVP better than integration of first order equations (i.e., a prognostic eq. for $j=0$)?
- Adaptation in time coordinate?

horizontal GA, cont.

Nonmonotonicity = DISASTER!

(inverse mapping no longer unique)
(

GA in Computational Models, cont.

- Consider an example from heat transfer

An isothermal block is suddenly heated at its surface:

QuickTime ${ }^{\text {TM }}$ and a
Animation decompressor are needed to see this picture.

1. From a global perspective, coordinate x, the surface heat transfer rate is initially unbounded

$$
q=-k d T / d x
$$

2. From a local perspective, with rescaled $x \sim x / t^{1 / 2}$, the surface temperature gradient is well behaved for all time.

$$
(d T / d X)_{X=0} \sim-1 / \sqrt{\pi}
$$

\rightarrow define space so that "motion" looks simple

EULAG metrics, cont.

Separability of metric structure into given vertical and horizontal dependencies limits generality but offers:

- Built in analytical structure for vertical mapping helps maintain accuracy of vertical metric identities to machine precision
- All metric coefficients (except for Γ) can be computed from the product of one and twodimensional arrays
- Separability can be used to help satisfy horizontal metric identities more easily

